Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Completely miscible nanocomposites – A breakthrough on its way to new types of functional materials

29.06.2011
In science and industry polymer nanocomposites are increasingly regarded as materials that will significantly help to define progress in the 21st century.

They consist of a polymer matrix and of nanoparticles which are inserted into the matrix as filler materials. A research group led by Professor Stephan Förster of the University of Bayreuth has now developed a process which opens an avenue for the production of new, completely miscible nanocomposites. These materials represent an extremely varied potential for technological innovations. The scientists discuss their trail blazing development in the publication "Angewandte Chemie International Edition".


Iron containing nanoparticles within a polymer matrix, as photographed with a raster electron microscope (SEM). The nanoparticles are prevented from aggregating with the aid of a polymer surface coating. The length of the polymer chains used for the surface coating determines the distance between the individual nanoparticles within the polymer system. Therefore, the distances can be regulated with a high degree of accuracy. PS 3.3k refers to polystyrol (a polymer system) with a molecular weight of 3300 g/mol, PS 7.6k refers to polystyrol with a molecular weight of 7600 g/mol. Images: Stephan Förster, Department of Physical Chemistry I, University of Bayreuth; free for publication

Nanoparticles are minute particles having a diameter of less than 100 nanometers. They can be incorporated into polymer systems as filler materials. Unfortunately they have the tendency to aggregate within the polymer matrix. As such, they are not distributed as individual particles in all segments of the matrix, but rather form deposits in a limited number of locations in the matrix. The underlying cause for this behavior is that the nanoparticles need to exert significantly less interfacial energy in the aggregated condition, than if they existed in the polymer system individually.

However, for industrial applications, nanocomposites are much more attractive if the individual nanoparticles are distributed separately in the polymer system. In this case, the new materials are characterized by significantly better transparency, whereas aggregated nanoparticles cause them to be dull and opaque. Additionally, the electrical and thermal conductivity of the materials are more pronounced, the more uniformly the nanoparticles are distributed in the polymer system. Finally, the resulting materials are then also more heat and fire resistant.

But how can the aggregation of the nanoparticles in the polymer system be prevented? In an effort to solve this problem, Professor Stephan Förster, in cooperation with scientists of the University of Hamburg, has developed a new research idea which he has already implemented successfully at laboratory scale. The process begins with polymer chains. An adhesion molecule is attached to each chain. Just as with a grappling hook, the polymer chain attaches itself to a nanoparticle with the aid of this molecule; it does so in such a way that one end rests on the surface nearly vertically, whereas its other end points outwards. Using this method, each nanoparticle obtains a complete surface coating consisting of polymer chains, giving the coating the appearance of a spherical brush. These polymer chains, pointing outwards just as bristles do, prevent the nanoparticles from coming too close to each other as they are introduced into the polymer matrix. They are preserved as individual particles whereas the polymer chains are processed into the polymer system.

This opens the door for producing highly advanced functional materials, in which separate nanoparticles are incorporated into all sections of the polymer system. The characteristics and behaviors of these types of nanocomposites are largely dependent on the distance between neighboring nanoparticles. These distances can be regulated with great accuracy during production. The chemical composition of the nanoparticles can also vary, which has a profound impact on the resulting material. Consequently, this new process enables the targeted development of polymer nanocomposites which, based on their interior composition, exhibit specific characteristics and behaviors.

Semiconductor nanoparticles, e.g. those containing cadmium compounds, are of particular interest. If it were possible to comprehensively distribute these on an industrial scale into a polymer matrix, new perspectives would open up for the energy technology field. It so happens that nanocomposites of this type are likely to be suitable for the design of high performance solar cells, which are capable of converting a large portion of the stored light energy into electrical power. Also, apparently attractive are research activities on iron containing nanoparticles, which are incorporated into the polymer matrix at high densities. This would potentially result in very large capacities for magnetic storage of information in very dense spaces.

"In the coming years we intend to produce a broad spectrum of nanocomposites at laboratory scale and evaluate these for their application potential", declares Professor Stephan Förster. "I find it highly likely that this surface coating process will allow us to develop innovative functional materials which will surprise us with their exceptional performance characteristics."

Publication:

Steffen Fischer, Andrea Salcher, Andreas Kornowski, Horst Weller, and Stephan Förster,
Completely Miscible Nanocomposites,
in: Angewandte Chemie, International Edition, 2011, Volume 50,
Article first published online: June 3, 2011.
DOI-Bookmark: 10.1002/anie.201006746
The paper was chosen by the Editors as a "Hot Paper", due to its importance in a rapidly evolving field of high current interest.

Contact for further information:

Prof. Dr. Stephan Förster
Department of Physical Chemistry I
University of Bayreuth
D-95440 Bayreuth
Tel: +49 (0)921 / 55-2760
E-Mail (Sekr.): elisabeth.duengfelder@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Further information:
http://www.uni-bayreuth.de

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>