Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Completely miscible nanocomposites – A breakthrough on its way to new types of functional materials

29.06.2011
In science and industry polymer nanocomposites are increasingly regarded as materials that will significantly help to define progress in the 21st century.

They consist of a polymer matrix and of nanoparticles which are inserted into the matrix as filler materials. A research group led by Professor Stephan Förster of the University of Bayreuth has now developed a process which opens an avenue for the production of new, completely miscible nanocomposites. These materials represent an extremely varied potential for technological innovations. The scientists discuss their trail blazing development in the publication "Angewandte Chemie International Edition".


Iron containing nanoparticles within a polymer matrix, as photographed with a raster electron microscope (SEM). The nanoparticles are prevented from aggregating with the aid of a polymer surface coating. The length of the polymer chains used for the surface coating determines the distance between the individual nanoparticles within the polymer system. Therefore, the distances can be regulated with a high degree of accuracy. PS 3.3k refers to polystyrol (a polymer system) with a molecular weight of 3300 g/mol, PS 7.6k refers to polystyrol with a molecular weight of 7600 g/mol. Images: Stephan Förster, Department of Physical Chemistry I, University of Bayreuth; free for publication

Nanoparticles are minute particles having a diameter of less than 100 nanometers. They can be incorporated into polymer systems as filler materials. Unfortunately they have the tendency to aggregate within the polymer matrix. As such, they are not distributed as individual particles in all segments of the matrix, but rather form deposits in a limited number of locations in the matrix. The underlying cause for this behavior is that the nanoparticles need to exert significantly less interfacial energy in the aggregated condition, than if they existed in the polymer system individually.

However, for industrial applications, nanocomposites are much more attractive if the individual nanoparticles are distributed separately in the polymer system. In this case, the new materials are characterized by significantly better transparency, whereas aggregated nanoparticles cause them to be dull and opaque. Additionally, the electrical and thermal conductivity of the materials are more pronounced, the more uniformly the nanoparticles are distributed in the polymer system. Finally, the resulting materials are then also more heat and fire resistant.

But how can the aggregation of the nanoparticles in the polymer system be prevented? In an effort to solve this problem, Professor Stephan Förster, in cooperation with scientists of the University of Hamburg, has developed a new research idea which he has already implemented successfully at laboratory scale. The process begins with polymer chains. An adhesion molecule is attached to each chain. Just as with a grappling hook, the polymer chain attaches itself to a nanoparticle with the aid of this molecule; it does so in such a way that one end rests on the surface nearly vertically, whereas its other end points outwards. Using this method, each nanoparticle obtains a complete surface coating consisting of polymer chains, giving the coating the appearance of a spherical brush. These polymer chains, pointing outwards just as bristles do, prevent the nanoparticles from coming too close to each other as they are introduced into the polymer matrix. They are preserved as individual particles whereas the polymer chains are processed into the polymer system.

This opens the door for producing highly advanced functional materials, in which separate nanoparticles are incorporated into all sections of the polymer system. The characteristics and behaviors of these types of nanocomposites are largely dependent on the distance between neighboring nanoparticles. These distances can be regulated with great accuracy during production. The chemical composition of the nanoparticles can also vary, which has a profound impact on the resulting material. Consequently, this new process enables the targeted development of polymer nanocomposites which, based on their interior composition, exhibit specific characteristics and behaviors.

Semiconductor nanoparticles, e.g. those containing cadmium compounds, are of particular interest. If it were possible to comprehensively distribute these on an industrial scale into a polymer matrix, new perspectives would open up for the energy technology field. It so happens that nanocomposites of this type are likely to be suitable for the design of high performance solar cells, which are capable of converting a large portion of the stored light energy into electrical power. Also, apparently attractive are research activities on iron containing nanoparticles, which are incorporated into the polymer matrix at high densities. This would potentially result in very large capacities for magnetic storage of information in very dense spaces.

"In the coming years we intend to produce a broad spectrum of nanocomposites at laboratory scale and evaluate these for their application potential", declares Professor Stephan Förster. "I find it highly likely that this surface coating process will allow us to develop innovative functional materials which will surprise us with their exceptional performance characteristics."

Publication:

Steffen Fischer, Andrea Salcher, Andreas Kornowski, Horst Weller, and Stephan Förster,
Completely Miscible Nanocomposites,
in: Angewandte Chemie, International Edition, 2011, Volume 50,
Article first published online: June 3, 2011.
DOI-Bookmark: 10.1002/anie.201006746
The paper was chosen by the Editors as a "Hot Paper", due to its importance in a rapidly evolving field of high current interest.

Contact for further information:

Prof. Dr. Stephan Förster
Department of Physical Chemistry I
University of Bayreuth
D-95440 Bayreuth
Tel: +49 (0)921 / 55-2760
E-Mail (Sekr.): elisabeth.duengfelder@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Further information:
http://www.uni-bayreuth.de

More articles from Materials Sciences:

nachricht New material for digital memories of the future
19.10.2017 | Linköping University

nachricht Electrode materials from the microwave oven
19.10.2017 | Technical University of Munich (TUM)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

How Obesity Promotes Breast Cancer

20.10.2017 | Life Sciences

How the smallest bacterial pathogens outwit host immune defences by stealth mechanisms

20.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>