Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coming to a lab bench near you: Femtosecond X-ray spectroscopy

07.04.2017

Berkeley Lab researchers capture ultrafast chemical reactions with tabletop apparatus

The ephemeral electron movements in a transient state of a reaction important in biochemical and optoelectronic processes have been captured and, for the first time, directly characterized using ultrafast X-ray spectroscopy at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab).


Upon light activation (in purple, bottom row's ball-and-stick diagram), the cyclic structure of the 1,3-cyclohexadiene molecule rapidly unravels into a near-linear shape in just 200 millionths of a billionth of a second. Using ultrafast x-ray spectroscopy, researchers have captured in real time the accompanying transformation of the molecule's outer electron "clouds" (in yellow and teal, top row's sphere diagram) as the structure unfurls.

Credit: Kristina Chang/Berkeley Lab

Like many rearrangements of molecular structures, the ring-opening reactions in this study occur on timescales of hundreds of femtoseconds (1 femtosecond equals a millionth of a billionth of a second). The researchers were able to collect snapshots of the electronic structure during the reaction by using femtosecond pulses of X-ray light on a tabletop apparatus.

The experiments are described in the April 7 issue of the journal Science.

"Much of the work over the past decades characterizing molecules and materials has focused on X-ray spectroscopic investigations of static or non-changing systems," said study principal investigator Stephen Leone, faculty scientist at Berkeley Lab's Chemical Sciences Division and UC Berkeley professor of chemistry and physics. "Only recently have people started to push the time domain and look for transient states with X-ray spectroscopy on timescales of femtoseconds."

The researchers focused on the structural rearrangements that occur when a molecule called 1,3 cyclohexadiene (CHD) is triggered by light, leading to a higher-energy rearrangement of electrons, known as an excited state. In this excited state, the cyclic molecule of six carbon atoms in a ring opens up into a linear six-carbon chain molecule. The ring-opening is driven by an extremely fast exchange of energy between the motions of the atomic nuclei and the new, dynamic electronic configuration.

This light-activated, ring-opening reaction of cyclic molecules is a ubiquitous chemical process that is a key step in the photobiological synthesis of vitamin D in the skin and in optoelectronic technologies underlying optical switching, optical data storage, and photochromic devices.

In order to characterize the electronic structure during the ring-opening reaction of CHD, the researchers took advantage of the unique capabilities of X-ray light as a powerful tool for chemical analysis. In their experiments, the researchers used an ultraviolet pump pulse to trigger the reaction and subsequently probe the progress of the reaction at a controllable time delay using the X-ray flashes. At a given time delay following the UV light exposure, the researchers measure the wavelengths (or energies) of X-ray light that are absorbed by the molecule in a technique known as time-resolved X-ray spectroscopy.

"The key to our experiment is to combine the powerful advantages of X-ray spectroscopy with femtosecond time resolution, which has only recently become possible at these photon energies," said study lead author Andrew Attar, a UC Berkeley Ph.D. student in chemistry. "We used a novel instrument to make an X-ray spectroscopic 'movie' of the electrons within the CHD molecule as it opens from a ring to a linear configuration. The spectroscopic still frames of our 'movie' encode a fingerprint of the molecular and electronic structure at a given time."

In order to unambiguously decode the spectroscopic fingerprints that were observed experimentally, a series of theoretical simulations were performed by researchers at Berkeley Lab's Molecular Foundry and the Theory Institute for Materials and Energy Spectroscopies (TIMES) at DOE's SLAC National Accelerator Laboratory. The simulations modeled both the ring-opening process and the interaction of the X-rays with the molecule during its transformation.

"The richness and complexity of dynamic X-ray spectroscopic signatures such as the ones captured in this study require a close synergy with theoretical simulations that can directly model and interpret the experimentally observed quantities," said Das Pemmaraju, project scientist at Berkeley Lab's Chemical Sciences Division and an associate staff scientist within TIMES at SLAC.

The use of femtosecond X-ray pulses on a laboratory benchtop scale is one of the key technological milestones to emerge from this study.

"We have used a tabletop, laser-based light source with pulses of X-rays at energies that have so far been limited only to large-facility sources," said Attar.

The X-ray pulses are produced using a process known as high-harmonic generation, wherein the infrared frequencies of a commercial femtosecond laser are focused into a helium-filled gas cell and, through a nonlinear interaction with the helium atoms, are up-converted to X-ray frequencies. The infrared frequencies were multiplied by a factor of about 300.

The researchers are now utilizing the instrument to study myriad light-activated chemical reactions with a particular focus on reactions that are relevant to combustion.

"These studies promise to expand our understanding of the coupled evolution of molecular and electronic structure, which lies at the heart of chemistry," said Attar.

###

Other co-authors of the study are Aditi Bhattacherjee and Kirsten Schnorr at Berkeley Lab's Chemical Sciences Division and UC Berkeley's Department of Chemistry; and Kristina Closser and David Prendergast at Berkeley Lab's Molecular Foundry.

The work was primarily supported by DOE's Office of Science. The Molecular Foundry is a DOE Office of Science User Facility.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Sarah Yang
scyang@lbl.gov
510-486-4575

 @BerkeleyLab

http://www.lbl.gov 

Sarah Yang | EurekAlert!

Further reports about: Femtosecond X-ray X-ray light X-ray spectroscopy electronic structure

More articles from Materials Sciences:

nachricht Magnesium magnificent for plasmonic applications
23.05.2018 | Rice University

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>