Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More comfort for breast cancer patients

15.05.2012
In cooperation with Amoena Medizin-Orthopädie-Technik GmbH, researchers from the Hohenstein Institute have taken on a highly sensitive yet very important issue.

In the framework of the publicly funded research project (AiF no. KF2136714HG0)they developed a special brassiere for breast cancer patients. The new brassiere can be worn during and directly after radiation therapy and takes into account the high sensitivity of the skin which often occurs during treatments as well as changes in breast volume.

In cooperation with Amoena Medizin-Orthopädie-Technik GmbH, researchers from the Hohenstein Institute have taken on a highly sensitive yet very important issue. In the framework of the publicly funded research project (AiF no. KF2136714HG0) they developed a special brassiere for breast cancer patients. The new brassiere can be worn during and directly after radiation therapy and takes into account the high sensitivity of the skin which often occurs during treatments as well as changes in breast volume.

Breast cancer is the most common type of cancer for women in Western countries. 58,000 women are diagnosed with breast cancer in Germany alone each year. Today 60-70 % of all affected patients can receive breast conserving surgery. In these cases subsequent standard therapy includes several weeks of radiation therapy with the objective of using high-energy radiation to destroy any cancer cells remaining in the breast tissue. To achieve this, a radiation beam is directed trough the skin and into the affected tissue.

Despite the relatively gentle modern treatment patients often suffer from strong skin irritations. Depending on skin type there can also be side effects such as redness, lifting of superficial skin layers, flaking, swelling and weeping skin areas or even open wounds. These side effects have a massive influence on the success of the therapy and the patients' quality of life.

Any chafing and constriction of the radiated skin caused by clothing and in this case especially by a “normal” bra can therefore be perceived as extremely uncomfortable, often even months after the treatment itself. The materials used or the seams can additionally irritate the skin and cause pressure pain.
While patients with small breasts can go without a bra, women with larger busts depend on wearing a brassiere. The researchers' objective was therefore to develop a special bra for radiation therapy patients. Design, material and workmanship take into account the overly sensitive

breast tissue as well as the inflamed skin and also provide best possible wearing comfort for the breast cancer patients.

The project team developed an ideal basic pattern on the basis of the anatomical data of breast cancer patients determined using a contactless 3D scanner. This was then used to derive optimum seam lines corresponding to the specific requirements of the patients.

The researches also examined the skin sensorial properties of the materials used, i.e. how they feel on the skin. For this, real wearing situations were recreated in the laboratory and it was determined which sensations are caused by certain textile materials on the skin.

For already inflamed skin it is important that any fabrics worn close to the damaged skin are particularly soft and breathable, i.e. they have to absorb sweat immediately and wick it away from the body quickly. The materials can be neither too smooth nor too rough in order to minimise mechanical irritation of the skin.

The adapted processing technique is an important aspect of the new bra, in addition to pattern and cut as well as choice of material. This prevents additional mechanical irritation, for example through incorrectly placed seams. The improved wearing comfort during and after therapy results in relief of aches and pains and vitally improves the well-being of the wearer.

The special bra is the worldwide first textile product which was developed specifically for breast cancer patients in cooperation with a research institute. The expectations of the project partners regarding the acceptance of the special bra are correspondingly high.

More information and contact:
Amoena Medizin-Orthopädie-Technik GmbH
Phone: +49 8035/871-0
Email: info.customerservice@amoena.com
Internet: www.amoena.de

Rose-Marie Riedl | idw
Further information:
http://www.hohenstein.de/en/inline/pressrelease_12355.xhtml

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>