Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Color-changing coatings ready for the big time

24.11.2016

Wafer-thin, scratch-proof films can generate a rainbow of colors using random metallic nanostructures.

The dazzling colors of peacock feathers arise from the physical interaction of light with biological nanostructures. Researchers have discovered how to exploit this natural trickery known as structural coloration into a large-scale printing technology that produces lightweight and ultra-resistant coatings in any color desirable.


The nanoporous feathers of the plum-throated coating bird inspired the KAUST team's approach.

Copyright : © David Tipling Photo Library, Alamy stock photo C8XDBA.

Researchers routinely produce photonic structures to influence the behavior of light for applications such as fiber-optic communications. Many groups have used photonic technology to generate new forms of artificial structural colors that take advantage of the entire spectrum of visible light.

Moving this technology out of the lab is challenging, however, because photonic nanostructures are often fragile and difficult to produce in practical quantities.

Andrea Fratalocchi from the University’s electrical engineering program and colleagues from Harvard University and ETH Zurich used wet chemical techniques to help overcome the difficulties of scaling-up photonic colors. Inspired by the nanoporous feathers of the plum-throated cotinga bird, the team’s approach began by sputtering a platinum–aluminum based alloy on to a target surface. Then, a process called dealloying dissolves most of the aluminum and causes the remaining metal to reorganize into a bumpy network featuring open nanopores.

Next, the researchers deposited an ultra-thin layer of protective sapphire on to the metal network to both protect the surface and modify the way in which light interacts with the photonic nanopores. Surprisingly, slight changes of the sapphire thickness from 7 to 53 nanometers yielded remarkable color changes—the initially transparent film underwent stepwise transitions to yellow, orange, red and blue tones.

“Controlling these colors is experimentally very simple and uses coating technologies that are cheap and easily implemented,” said Fratalocchi. “However, understanding how the complex light-matter interactions generate colors took months of work.”

The team’s high-level simulations determined that color generation begins when light strikes the metal and generates wave-like entities known as surface plasmons. As the plasmons interact with the randomly distributed pores, they become trapped and modulations in the coating’s refractive index produced epsilon-near-zero regions in the nanopores where waves propagate extremely slowly. Adding the sapphire film caused additional reflections of the trapped waves, which created a flow of saturated color through resonance effects.

Fratalocchi noted that the way colors are formed in this structure can open the way for "programmable" nanomaterials for many applications.

“Imagine a scratch on a car that can be repainted with an extremely thin material without other expensive procedures, or as a lightweight, maintenance-free way to coat airplanes,” he stated. “This technology could be a real revolution.”

Associated links

Journal information

Light: Science & Applications Advance

Carmen Cecile Denman | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>