Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coating Could Strengthen Nation's Infrastructure

22.05.2009
Researchers at Missouri University of Science and Technology have developed a glass-based coating for reinforcement bars that helps prevent corrosion and strengthens the bond between steel and concrete. This material could help engineers build stronger bridges and increase the longevity of other steel-reinforced structures.

Currently, the U.S. market for polymer-coated and galvanized rebar in the construction industry is more than $4 billion per year. But research has shown that polymer coatings are not providing adequate corrosion protection for the rebar that helps to reinforce the nation’s aging infrastructure.

The Missouri S&T coating is an engineered mixture of glass, clays and water. A slurry is applied to the rebar and heated to more than 1,400 degrees Fahrenheit. The coating, which adheres to steel, promotes bonding with concrete and works to prevent corrosion from water and salt.

Missouri S&T has filed for a patent on the technology, which was developed by a team of researchers led by Dr. Richard Brow, Curators’ Professor of materials science and engineering, and Dr. Genda Chen, professor of civil, architectural and environmental engineering and interim director of the Center for Infrastructure Engineering Studies at S&T. The research was funded by the Leonard Wood Institute.

The Department of Defense has used related technology to develop blast-resistant walls. Brow and Chen realized that some ideas originally conceived by the U.S. Army Corps of Engineers could be built upon in order to engineer the glass-ceramic coating for rebar.

Missouri S&T recently licensed the new technology to Pro-Perma Engineered Coatings in St. Louis. “The goal is to take innovations like this out of the laboratory, team up with partners, solve problems, and make an economic impact,” says Keith Strassner, director of technology transfer and economic development at Missouri S&T.

Mike Koenigstein, who earned a bachelor’s degree in ceramic engineering at Missouri S&T in 1993, is managing partner of Pro-Perma. So far, he says, the company has two projects in the works that utilize the new coating. The first will involve the strengthening of marine structures in Corpus Christi, Texas. Next, Koenigstein plans to strengthen a sea wall near Pearl Harbor in Oahu. Both projects are sponsored by the Department of Defense.

In addition to protecting structures from water and salt, Brow and Chen say the new coating would help make bridges and buildings stronger in earthquake-prone regions.

According to Chen, there are approximately 800 short-span bridges in Missouri that need to be retrofitted or replaced. In addition, more than 200 longer-span bridges are in urgent need of rehabilitation.

Strassner and Koenigstein think the new rebar coating will prove to be in high demand. They envision opening a pilot plant dedicated to producing the glass-based coating in Rolla, which is already home to high-tech glass manufacturer Mo-Sci Corp. as well as Missouri S&T.

Pro-Perma and Mo-Sci are working as partners to commercialize the technology developed at Missouri S&T.

“We have all of the resources here to support technology-driven businesses,” Strassner says. “We want to be an economic engine for the state of Missouri.”

Lance Feyh | Newswise Science News
Further information:
http://www.mst.edu

More articles from Materials Sciences:

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

nachricht A rhodium-based catalyst for making organosilicon using less precious metal
22.06.2017 | Tokyo Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>