Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coating Could Strengthen Nation's Infrastructure

22.05.2009
Researchers at Missouri University of Science and Technology have developed a glass-based coating for reinforcement bars that helps prevent corrosion and strengthens the bond between steel and concrete. This material could help engineers build stronger bridges and increase the longevity of other steel-reinforced structures.

Currently, the U.S. market for polymer-coated and galvanized rebar in the construction industry is more than $4 billion per year. But research has shown that polymer coatings are not providing adequate corrosion protection for the rebar that helps to reinforce the nation’s aging infrastructure.

The Missouri S&T coating is an engineered mixture of glass, clays and water. A slurry is applied to the rebar and heated to more than 1,400 degrees Fahrenheit. The coating, which adheres to steel, promotes bonding with concrete and works to prevent corrosion from water and salt.

Missouri S&T has filed for a patent on the technology, which was developed by a team of researchers led by Dr. Richard Brow, Curators’ Professor of materials science and engineering, and Dr. Genda Chen, professor of civil, architectural and environmental engineering and interim director of the Center for Infrastructure Engineering Studies at S&T. The research was funded by the Leonard Wood Institute.

The Department of Defense has used related technology to develop blast-resistant walls. Brow and Chen realized that some ideas originally conceived by the U.S. Army Corps of Engineers could be built upon in order to engineer the glass-ceramic coating for rebar.

Missouri S&T recently licensed the new technology to Pro-Perma Engineered Coatings in St. Louis. “The goal is to take innovations like this out of the laboratory, team up with partners, solve problems, and make an economic impact,” says Keith Strassner, director of technology transfer and economic development at Missouri S&T.

Mike Koenigstein, who earned a bachelor’s degree in ceramic engineering at Missouri S&T in 1993, is managing partner of Pro-Perma. So far, he says, the company has two projects in the works that utilize the new coating. The first will involve the strengthening of marine structures in Corpus Christi, Texas. Next, Koenigstein plans to strengthen a sea wall near Pearl Harbor in Oahu. Both projects are sponsored by the Department of Defense.

In addition to protecting structures from water and salt, Brow and Chen say the new coating would help make bridges and buildings stronger in earthquake-prone regions.

According to Chen, there are approximately 800 short-span bridges in Missouri that need to be retrofitted or replaced. In addition, more than 200 longer-span bridges are in urgent need of rehabilitation.

Strassner and Koenigstein think the new rebar coating will prove to be in high demand. They envision opening a pilot plant dedicated to producing the glass-based coating in Rolla, which is already home to high-tech glass manufacturer Mo-Sci Corp. as well as Missouri S&T.

Pro-Perma and Mo-Sci are working as partners to commercialize the technology developed at Missouri S&T.

“We have all of the resources here to support technology-driven businesses,” Strassner says. “We want to be an economic engine for the state of Missouri.”

Lance Feyh | Newswise Science News
Further information:
http://www.mst.edu

More articles from Materials Sciences:

nachricht New approach to revolutionize the production of molecular hydrogen
22.05.2017 | Technische Universität Dresden

nachricht Photocatalyst makes hydrogen production 10 times more efficient
19.05.2017 | Kobe University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>