Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Channeling valleytronics in graphene

07.05.2015

Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene

To the list of potential applications of graphene - a two-dimensional semiconductor of pure carbon that is stronger and much faster than silicon - we can now add valleytronics, the coding of data in the wavelike motion of electrons as they speed through a conductor. Berkeley Lab researchers have discovered topologically protected one-dimensional electron conducting channels at the domain walls of bilayer graphene. These conducting channels are "valley polarized," which means they can serve as filters for electron valley polarization in future devices such as quantum computers.


In this near-field infrared nanoscopy image of bilayer graphene, domain walls are revealed by bright lines that arise because of the walls' local electronic structures and IR responses.

Image courtesy of Feng Wang, Berkeley Lab

"Combining near-field infrared nanometer-scale microscopy and low-temperature electrical transport measurements, we have recorded the first experimental observations of 1D ballistic electron conducting channels at bilayer graphene domain walls," says Feng Wang, a condensed matter physicist with Berkeley Lab's Materials Sciences Division, who led this work. "These 1D valley-polarized conducting channels featured a ballistic length of about 400 nanometers at 4 kelvin. Their existence opens up opportunities for exploring unique topological phases and valley physics in graphene."

Wang, who also holds an appointment with the University of California (UC) Berkeley Physics Department and is a member of the Kavli Energy NanoScience Institute (Kavli-ENSI), is the corresponding author of a paper describing this research in the journal Nature. The lead authors of the paper are Long Ju and Zhiwen Shi, members of Wang's research group. (See here for full list of authors.)

Valleytronics is generating a lot of excitement in the high-tech industry as a potential avenue to quantum computing. Like spintronics, valleytronics offers a tremendous advantage in data processing speeds over the electrical charge used in classical electronics.

"In valleytronics, electrons move through the lattice of a 2D semiconductor as a wave with two energy valleys, each valley being characterized by a distinct momentum and quantum valley number," Wang says. "This quantum valley number can be used to encode information when the electrons are in a minimum energy valley."

Recent theoretical work suggested that domain walls between AB- and BA-stacked bilayer graphene could provide an attractive place to realize one-dimensional electron conducting channels for valleytronics because the smoothness of the domain walls preserves electron valleys, unlike the atomic defects at graphene edges that result in valley-mixing. Until now, however, there has been no experimental evidence of these channels.

Working at Berkeley Lab's Advanced Light Source (ALS), a DOE Office of Science User Facility, Wang, Ju, Shi and their colleagues used tightly focused beams of infrared light to image in situ bilayer graphene layer-stacking domain walls on device substrates. Field effect devices fabricated over these domain walls revealed the 1D conducting channels.

In the bilayer graphene imaging work by Feng Wang and his group, IR light (yellow) is focused onto the apex of a metal-coated AFM tip and the backscattered infrared radiation is collected and measured.

"The infrared measurements were carried out at ALS beamline 5.4," says Shi. "The near-field infrared capabilities of this beamline enable optical spectroscopy with spatial resolutions that are way beyond the diffraction limit, allowing us to image the nanometer-wide domain walls in bilayer graphene."

Adds Ju, "That we were able to image the domain walls with a technique that is compatible with device fabrication was key to our work. With near-field IR spectroscopy, we could directly fabricate field effect devices over the domain walls and detect the 1D conducting channels."

To date, most valleytronics research has focused on the 2D semiconductors known as MX2 materials, which consist of a single layer of transition metal atoms, such as molybdenum or tungsten, sandwiched between two layers of chalcogen atoms, such as sulfur. The results of this study demonstrate that protected topological phases can also be realized in bilayer graphene, which is a tunable semiconductor, making the 2D carbon sheets useful for valleytronic applications.

"Our next step is to increase the ballistic length of these 1D channels so we can utilize them as electron valley filters, as well as for other manipulations of electron valleys in graphene," Wang says.

###

This research was primarily funded by the DOE Office of Science.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

Media Contact

Lynn Yarris
lcyarris@lbl.gov
510-486-5375

 @BerkeleyLab

http://www.lbl.gov 

Lynn Yarris | EurekAlert!

More articles from Materials Sciences:

nachricht Rice U. chemists create 3-D printed graphene foam
22.06.2017 | Rice University

nachricht Development of low-dimensional nanomaterials could revolutionize future technologies
19.06.2017 | DOE/Ames Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>