Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ceramic material revs up microwaving

02.09.2008
Quicker microwave meals that use less energy may soon be possible with new ceramic microwave dishes and, according to the material scientists responsible, this same material could help with organic waste remediation.

"Currently, food heated in a microwave loses heat to the cold dish because the dishes are transparent to microwaves," says Sridhar Komarneni, distinguished professor of clay mineralogy, College of Agricultural Sciences at Penn State. "The plates are still cool when the cooking is completed."

Materials are transparent to microwaves because the microwaves do not interact with the molecules in standard tableware. With liquids like water, the microwaves cause the molecules to move back and forth creating heat.

Komarneni, working with Hiroaki Katsuki and Nobuaki Kamochi, Saga Ceramic Research Laboratory, Saga, Japan, developed a ceramic from petalite and magnetite sintered together that heats up in the microwave without causing equipment problems the way most metals do.

They report their material in a recent issue of Chemistry of Materials.

Petalite is a commonly occurring mineral that contains lithium, aluminum and silicon and is often used to make thermal shock resistant ceramics because it expands very little when heated. Ceramic sintering uses powdered minerals pressed together hard to form green bodies. These green objects are fired first at low and then high temperatures.

When the petalite and magnetite are fired together, the magnetite converts to an iron oxide that heats up when placed in a microwave.

A rice cooker made of this material cooked rice in half the time it normally takes in a non-heating microwave rice cooker.

"Rice cooks very well with these dishes," says Komarneni who is also a member of Penn State's Materials Research Institute. "Dishes heated by themselves or with food could keep the food hot of up to 15 minutes. One might even cook a pizza on a plate and then deliver it hot."

However, those accustomed to cooking in a microwave will need to remember that the plates are hot and will burn bare hands. Potholders are again necessary.

Food preparation applications abound. A company in Arita, Japan -- long a locus of ceramic manufacturing -- called Asahi Ceramics Research Company is manufacturing microwave ware.

The material's microwave heating properties suggest another use. Because the material expands very little when heated, the petalite magnetite material does not shatter under rapid microwave heating and cooling as other materials might. The researchers created a plate of the petalite magnetite ceramic and coated the solid plate structure with cooking oil. After heating for 120 seconds, 98 percent of the oil was gone, decomposed into its components.

"We used cooking oil because it is an innocuous substance," says Komarneni. "We could, perhaps, use this material in a closed system to decompose organic contaminants in soil or dirt."

The researchers believe that once optimized, the material could be used for a variety of remediation applications at a lower energy cost and with less residue than many current methods.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>