Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cat litter to become an edible product?

13.07.2011
Sepiolites characterized for first time paving way to synthesis

Sepiolite is a lightweight porous mineral used in cat litter and other applications. The extraordinary properties of this clay make it a highly sought after mineral, despite its scarcity in the Earth's crust: only a few mines worldwide extract it, several of them clustered near Madrid in Spain, the world's biggest exporter of this material.

Sepiolite has been known since Roman times when it was used to filter and purify wine, but our understanding at the atomic scale of how these tiny crystals absorb enormous amounts of liquid has remained elusive until now. A team of scientists from Spain and France has obtained for the first time single-crystal X-ray diffraction images of sepiolite, opening the path to industrial synthesis and further improvement of its properties. The results will be published in the October 2011 issue of the journal American Mineralogist.

The team included scientists from the Universities of Madrid and Salamanca in Spain, of the Institut Laue-Langevin (ILL), the European Synchrotron Radiation Facility (ESRF), and the Spanish CRG Beamline at the ESRF (SpLine), all in Grenoble (France).

No other mineral is known to absorb more water or other liquids as efficiently as sepiolites. The reasons are its structural nanoporosity due to tunnels in the crystals, and the fact that the elongated, needle-shaped sepiolite crystals pack very loosely into a lightweight porous material. The surface area ranges between 75 and 400 m2/g, meaning that 20g of mineral have an internal surface equivalent to that of a football court. This is why sepiolite can absorb 2.5 times its weight in water. The tunnels in the crystal structure along with the empty space between the needles form a capillary network through which liquids can easily flow deep inside the bulk where the molecules attach to the surface of the crystals.
The tiny size of these crystals—they measure a few micrometres in length and as little as some dozen atoms across—has been the main obstacle to their being studied with single-crystal diffraction techniques. For this experiment, the scientists collected samples of sepiolite fibres from twenty different deposits around the world. These fibres, each made of many crystals, were first imaged with electron-microscopy and then studied using X-ray powder diffraction.

However, the most accurate technique to resolve the three-dimensional structure of a crystal is single-crystal diffraction with either X-rays or electrons as probe. "To study very small crystals, the ESRF uses an X-ray beam with just 2 by 5 micrometres cross section. In the end, we collected X-ray diffraction data for two fibres", says Manuel Sanchez del Rio from the ESRF, "but the data were not easy to interpret, and needed extensive computer simulations to confirm and refine the information gathered by electron diffraction experiments done in parallel at the University Complutense of Madrid".

The wide variety of sepiolites studied is now enabling the team to correlate between the physical and chemical properties of a given type with its atomic structure. "Today, no synthetic clay surpasses natural sepiolite. This is about to change as our understanding of their atomic structure will guide the synthesis of sepiolites from other, more abundant clay minerals and the design of completely new materials for use in catalysis and batteries", says Mercedes Suárez from the University of Salamanca.

"The future of sepiolites in the household is outside the litterbox. Already today, they absorb liquid spillages and odours and stabilise aqueous products like paints, resins and inks. In synthetic form, they could bind food products and stabilise drugs, extending their shelf life and making sepiolite an edible product", concludes Manuel Sanchez del Rio.

Reference: Manuel Sanchez del Rio, Emilia Garcia-Romero, Mercedes Suarez, Ivan da Silva, Luis Fuentes Montero, and Gema Martinez-Criado. Variability in sepiolite: Diffraction studies. American Mineralogist (in press). DOI : 10.2138/am.2011.3761.

Claus Habfast | EurekAlert!
Further information:
http://www.esrf.fr

More articles from Materials Sciences:

nachricht Researchers invent process to make sustainable rubber, plastics
25.04.2017 | University of Delaware

nachricht Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging
24.04.2017 | Pohang University of Science & Technology (POSTECH)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>