Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon Nanofibers Cut Flammability of Upholstered Furniture

11.12.2008
Carbon, the active ingredient in charcoal, is normally not considered a fire retardant, but researchers at the National Institute of Standards and Technology (NIST) have determined that adding a small amount of carbon nanofibers to the polyurethane foams used in some upholstered furniture can reduce flammability by about 35 percent when compared to foam infused with conventional fire retardants.

Laws require mattresses and upholstered furniture sold in California and used in public spaces such as hotels and offices be treated with fire retardants or barrier fabrics to minimize fire fatalities and injuries and to cut damage costs. According to the National Fire Protection Association, the total burden of fire in the United States was about $270 billion in 2005.

Ten years ago, NIST scientists found that nanoclays could be used as an effective fire retardant additive, but researchers have been seeking alternatives because nanoclay flame retardants do not prevent the melting and dripping of polyurethane foam when exposed to a fire. This molten foam accelerates the burning rate by as much as 300 percent. “It also creates so much smoke that it is a life-safety hazard,” said Jeff Gilman, leader of the Materials Flammability Group in the Building and Fire Research Laboratory.

Researchers added carbon nanofibers to the foam because they knew that adding nanoparticles to a polymer normally increases the viscosity, so it doesn’t flow as easily. “The carbon nanofibers help prevent the foam from dripping in a pool under the furniture and increasing the fire intensity,” Gilman said. Studies of the foam after the experiments showed that carbon nanofibers seemed to create a thermally stable, entangled network that kept the foam from dripping.

NIST fire researchers have traditionally used upholstered furniture to study its flammability, but in this study, they developed a small-scale technique for evaluating the effect of dripping and pooling on foam flammability. About the size of a slice of toast, the foam samples were treated with one of six combinations of carbon nanofibers or conventional clay flame retardants. The foam “toast” was suspended vertically over a pan, ignited, and the amount of drip was measured. The foam with carbon nanofibers did not drip.

“These small-scale experiments correlate well with the fire behavior of larger foam samples and are easier and less expensive to conduct,” said Gilman. “The small-scale tests will allow us to cost-effectively perform more experiments and help us find an optimal fire retardant faster.”

“Carbon nanofibers are still more expensive than conventional flame retardant materials, but because the price is decreasing and so little needs to be used, they could soon be an affordable and effective option,” Gilman explained.

NIST fire scientists will continue to study the mechanisms that reduce flammability and dripping and work with chemical companies, nano-additive suppliers, flame retardant suppliers and foam manufacturers to test new blends of foam and carbon nanofibers to improve flame retardant material. Additionally, new work is planned to develop sustainable, environmentally friendly fire retardants using cellulosic nanofibers and testing other innovative fire retardant approaches.

Evelyn Brown | Newswise Science News
Further information:
http://www.nist.gov

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>