Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon-Based Transistors Ramp Up Speed and Memory for Mobile Devices

17.07.2012
Award-winning TAU research attracts electronics industry giants
Though smartphones and tablets are hailed as the hardware of the future, their present-day incarnations have some flaws. Most notoriously, low RAM memory limits the number of applications that can be run at one time and quickly consumes battery power. Now, a Tel Aviv University researcher has found a creative solution to these well-known problems.

As silicon technology gets smaller, creating a large and powerful memory grows harder, say PhD candidate Elad Mentovich and his supervisor Dr. Shachar Richter of TAU's Department of Chemistry and Center for Nanoscience and Nanotechnology. Working with carbon molecules called C60, Mentovich has successfully built a sophisticated memory transistor that can both transfer and store energy, eliminating the need for a capacitor.

This molecular memory transistor, which can be as small as one nanometer, stores and disseminates information at high speed — and it's ready to be produced at existing high-tech fabrication facilities. Major companies in the memory industry have already expressed interest in the technology, says Mentovich, who was awarded first prize for his work at May's European conference in the session on Novel Materials Approaches for Microelectronics of the Materials Research Society. The basis of the technology has been published in the journal Advanced Materials and Applied Physics Letters.

Closing the technology gap

Mobile devices like smartphones and tablets are the computing devices of the post-personal-computer (PC) era, says Mentovich. These devices, which are small and battery operated, are quickly closing the gap with their laptop or desktop ancestors in terms of computing power and storage capacity — but they are lacking in RAM, the run-time memory reserves that computers need to operate various programs. Because current RAM technology is power-hungry and physically large, it doesn't function well in mobile devices. That's where laptops and PC's retain the edge.

As many as 15 years ago, technology experts realized that the problem with shrinking electronics would be the physical size of the hardware needed to make them run. The idea of a sophisticated transistor, which could do the job of both the transistor and the capacitor, was a technological dream — until now.

In order to tackle this technology gap, Mentovich was inspired by the work of Israel Prize winner Prof. Avraham Nitzan of TAU's Department of Chemistry, who proved that, due to its special structure, a molecule can store both an electric charge and information at the same time. To apply this finding to transistors, Mentovich used C60 molecules, made up of 60 carbon atoms, and put them in the channels of a transistor, creating a smaller-than-silicone, high-speed transistor that could also do the job of a capacitor.

Going mobile

Mentovich believes that this technology is sorely needed in today's mobile world. 2012 was the first year in which big technology companies sold more tablets and smartphones than laptops and notebooks combined, he notes. "When this new technology is integrated into future devices, you will have much more memory on your smartphones and tablets, approaching the level of a laptop. With that kind of memory, you'll be able to run applications simultaneously, and because it is low voltage, power consumption will fall and battery life will be longer."

The next step is to find a fabrication facility with the necessary materials to manufacture the transistors. According to Mentovich, the benefit of this product is that with the right equipment, which is standard in high-tech facilities, and his breakthroughs on how to put the transistors together, these molecular memories could be manufactured anywhere. "The distance to implementation is not far," he says.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Materials Sciences:

nachricht New material for digital memories of the future
19.10.2017 | Linköping University

nachricht Electrode materials from the microwave oven
19.10.2017 | Technical University of Munich (TUM)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>