Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon-Based Transistors Ramp Up Speed and Memory for Mobile Devices

17.07.2012
Award-winning TAU research attracts electronics industry giants
Though smartphones and tablets are hailed as the hardware of the future, their present-day incarnations have some flaws. Most notoriously, low RAM memory limits the number of applications that can be run at one time and quickly consumes battery power. Now, a Tel Aviv University researcher has found a creative solution to these well-known problems.

As silicon technology gets smaller, creating a large and powerful memory grows harder, say PhD candidate Elad Mentovich and his supervisor Dr. Shachar Richter of TAU's Department of Chemistry and Center for Nanoscience and Nanotechnology. Working with carbon molecules called C60, Mentovich has successfully built a sophisticated memory transistor that can both transfer and store energy, eliminating the need for a capacitor.

This molecular memory transistor, which can be as small as one nanometer, stores and disseminates information at high speed — and it's ready to be produced at existing high-tech fabrication facilities. Major companies in the memory industry have already expressed interest in the technology, says Mentovich, who was awarded first prize for his work at May's European conference in the session on Novel Materials Approaches for Microelectronics of the Materials Research Society. The basis of the technology has been published in the journal Advanced Materials and Applied Physics Letters.

Closing the technology gap

Mobile devices like smartphones and tablets are the computing devices of the post-personal-computer (PC) era, says Mentovich. These devices, which are small and battery operated, are quickly closing the gap with their laptop or desktop ancestors in terms of computing power and storage capacity — but they are lacking in RAM, the run-time memory reserves that computers need to operate various programs. Because current RAM technology is power-hungry and physically large, it doesn't function well in mobile devices. That's where laptops and PC's retain the edge.

As many as 15 years ago, technology experts realized that the problem with shrinking electronics would be the physical size of the hardware needed to make them run. The idea of a sophisticated transistor, which could do the job of both the transistor and the capacitor, was a technological dream — until now.

In order to tackle this technology gap, Mentovich was inspired by the work of Israel Prize winner Prof. Avraham Nitzan of TAU's Department of Chemistry, who proved that, due to its special structure, a molecule can store both an electric charge and information at the same time. To apply this finding to transistors, Mentovich used C60 molecules, made up of 60 carbon atoms, and put them in the channels of a transistor, creating a smaller-than-silicone, high-speed transistor that could also do the job of a capacitor.

Going mobile

Mentovich believes that this technology is sorely needed in today's mobile world. 2012 was the first year in which big technology companies sold more tablets and smartphones than laptops and notebooks combined, he notes. "When this new technology is integrated into future devices, you will have much more memory on your smartphones and tablets, approaching the level of a laptop. With that kind of memory, you'll be able to run applications simultaneously, and because it is low voltage, power consumption will fall and battery life will be longer."

The next step is to find a fabrication facility with the necessary materials to manufacture the transistors. According to Mentovich, the benefit of this product is that with the right equipment, which is standard in high-tech facilities, and his breakthroughs on how to put the transistors together, these molecular memories could be manufactured anywhere. "The distance to implementation is not far," he says.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>