Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Carbon-Based Electronics in Sight? Triazine-based, graphitic carbon nitride as novel two-dimensional semiconductor


Graphene has been considered a hot candidate for a new generation of silicon-free electronics since the discovery of this two-dimensional form of carbon.

However, graphene is not a semiconductor. In the journal Angewandte Chemie, an international team of researchers has now introduced a carbon nitride, a structural analogue of graphene made of carbon and nitrogen that appears to exhibit semiconducting properties.

With a planar, hexagonal, honeycomb structure and freely moving electrons, graphene is, in principle, nothing more than a single-atom layer of graphite. From an electronic point of view, it is a very interesting substance – but it is missing the typical electronic band gap that would make it a semiconductor.

This band gap is the difference in energy between the valence band and the conduction band of the electrons. To be effective, this gap must not be too large, so that it allows electrons to easily move from the valence band to the conduction band when excited.

Various methods have previously been used to provide graphene with such a band gap. An alternative idea is to make a “graphitic carbon nitride”, a material made of carbon and nitrogen, which ought to have properties very similar to graphene.

A team of researchers from the University of Liverpool (UK), the University of Ulm (Germany), the Humboldt University in Berlin (Germany), the Aalto University (Finland), University College London (UK), and the Max Planck Institute of Colloids and Interfaces in Potsdam (Germany) has now been able to make such a material for the first time.

Transmission electron microscopy and scanning force microscopy, as well as X-ray crystallographic examinations proved that the thin crystalline films are a triazine-based, graphitic carbon nitride (TGCN). Triazines are six-membered rings containing three carbon and three nitrogen atoms.

The new material consists of such triazine rings, with additional nitrogen atoms connecting the rings into groups of three to make a two-dimensional layer. The team led by Andrew I. Cooper and Michael J. Bojdys believes that these layers are not fully planar, but are instead slightly wavy.

TGCN thus has a structure similar to that of graphite, however—as hoped—it is a semiconductor. The films produced consisted of between three and several hundred layers of atoms with a direct band gap between 1.6 and 2.0 eV. During the production process, the layers of TGCN are preferentially deposited onto substrates. The crystallization of TGCN on the surface of insulating quartz offers potential for practically relevant applications. This may be a step on the way to the post-silicon era of electronics.

About the Author

Dr. Michael J. Bojdys initiated this work as a postdoctoral researcher funded by an EPSRC Programme Grant in Liverpool. He is now a junior group leader at the TU Bergakademie Freiberg, working on organic functional materials for energy and storage applications.

Author: Andrew I. Cooper, University of Liverpool (UK),

Title: Triazine-Based, Graphitic Carbon Nitride: a Two-Dimensional Semiconductor

Angewandte Chemie International Edition, Permalink to the article:

Andrew I. Cooper | Angewandte Chemie

Further reports about: Aalto Colloids EPSRC Electronics Graphitic conduction electrons graphene graphite nitrogen structure

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>