Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon-Based Electronics in Sight? Triazine-based, graphitic carbon nitride as novel two-dimensional semiconductor

05.06.2014

Graphene has been considered a hot candidate for a new generation of silicon-free electronics since the discovery of this two-dimensional form of carbon.

However, graphene is not a semiconductor. In the journal Angewandte Chemie, an international team of researchers has now introduced a carbon nitride, a structural analogue of graphene made of carbon and nitrogen that appears to exhibit semiconducting properties.

With a planar, hexagonal, honeycomb structure and freely moving electrons, graphene is, in principle, nothing more than a single-atom layer of graphite. From an electronic point of view, it is a very interesting substance – but it is missing the typical electronic band gap that would make it a semiconductor.

This band gap is the difference in energy between the valence band and the conduction band of the electrons. To be effective, this gap must not be too large, so that it allows electrons to easily move from the valence band to the conduction band when excited.

Various methods have previously been used to provide graphene with such a band gap. An alternative idea is to make a “graphitic carbon nitride”, a material made of carbon and nitrogen, which ought to have properties very similar to graphene.

A team of researchers from the University of Liverpool (UK), the University of Ulm (Germany), the Humboldt University in Berlin (Germany), the Aalto University (Finland), University College London (UK), and the Max Planck Institute of Colloids and Interfaces in Potsdam (Germany) has now been able to make such a material for the first time.

Transmission electron microscopy and scanning force microscopy, as well as X-ray crystallographic examinations proved that the thin crystalline films are a triazine-based, graphitic carbon nitride (TGCN). Triazines are six-membered rings containing three carbon and three nitrogen atoms.

The new material consists of such triazine rings, with additional nitrogen atoms connecting the rings into groups of three to make a two-dimensional layer. The team led by Andrew I. Cooper and Michael J. Bojdys believes that these layers are not fully planar, but are instead slightly wavy.

TGCN thus has a structure similar to that of graphite, however—as hoped—it is a semiconductor. The films produced consisted of between three and several hundred layers of atoms with a direct band gap between 1.6 and 2.0 eV. During the production process, the layers of TGCN are preferentially deposited onto substrates. The crystallization of TGCN on the surface of insulating quartz offers potential for practically relevant applications. This may be a step on the way to the post-silicon era of electronics.

About the Author

Dr. Michael J. Bojdys initiated this work as a postdoctoral researcher funded by an EPSRC Programme Grant in Liverpool. He is now a junior group leader at the TU Bergakademie Freiberg, working on organic functional materials for energy and storage applications.

Author: Andrew I. Cooper, University of Liverpool (UK), http://www.liv.ac.uk/cooper-group/people/

Title: Triazine-Based, Graphitic Carbon Nitride: a Two-Dimensional Semiconductor

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201402191

Andrew I. Cooper | Angewandte Chemie

Further reports about: Aalto Colloids EPSRC Electronics Graphitic conduction electrons graphene graphite nitrogen structure

More articles from Materials Sciences:

nachricht Engineers develop smart material that changes stiffness when twisted or bent
15.02.2018 | Iowa State University

nachricht Breaking local symmetry: Why water freezes but silica forms a glass
14.02.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>