Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech-led team designs novel negative-index metamaterial that responds to visible light

23.04.2010
Uniquely versatile material could be used for more efficient light collection in solar cells

A group of scientists led by researchers from the California Institute of Technology (Caltech) has engineered a type of artificial optical material—a metamaterial—with a particular three-dimensional structure such that light exhibits a negative index of refraction upon entering the material. In other words, this material bends light in the "wrong" direction from what normally would be expected, irrespective of the angle of the approaching light.

This new type of negative-index metamaterial (NIM), described in an advance online publication in the journal Nature Materials, is simpler than previous NIMs—requiring only a single functional layer—and yet more versatile, in that it can handle light with any polarization over a broad range of incident angles. And it can do all of this in the blue part of the visible spectrum, making it "the first negative index metamaterial to operate at visible frequencies," says graduate student Stanley Burgos, a researcher at the Light-Material Interactions in Energy Conversion Energy Frontier Research Center at Caltech and the paper's first author.

"By engineering a metamaterial with such properties, we are opening the door to such unusual—but potentially useful—phenomena as superlensing (high-resolution imaging past the diffraction limit), invisibility cloaking, and the synthesis of materials index-matched to air, for potential enhancement of light collection in solar cells," says Harry Atwater, Howard Hughes Professor and professor of applied physics and materials science, director of Caltech's Resnick Institute, founding member of the Kavli Nanoscience Institute, and leader of the research team

What makes this NIM unique, says Burgos, is its engineering. "The source of the negative-index response is fundamentally different from that of previous NIM designs," he explains. Those previous efforts used multiple layers of "resonant elements" to refract the light in this unusual way, while this version is composed of a single layer of silver permeated with "coupled plasmonic waveguide elements."

Surface plasmons are light waves coupled to waves of electrons at the interface between a metal and a dielectric (a non-conducting material like air). Plasmonic waveguide elements route these coupled waves through the material. Not only is this material more feasible to fabricate than those previously used, Burgos says, it also allows for simple "tuning" of the negative-index response; by changing the materials used, or the geometry of the waveguide, the NIM can be tuned to respond to a different wavelength of light coming from nearly any angle with any polarization. "By carefully engineering the coupling between such waveguide elements, it was possible to develop a material with a nearly isotopic refractive index tuned to operate at visible frequencies."

This sort of functional flexibility is critical if the material is to be used in a wide variety of ways, says Atwater. "For practical applications, it is very important for a material's response to be insensitive to both incidence angle and polarization," he says. "Take eyeglasses, for example. In order for them to properly focus light reflected off an object on the back of your eye, they must be able to accept and focus light coming from a broad range of angles, independent of polarization. Said another way, their response must be nearly isotropic. Our metamaterial has the same capabilities in terms of its response to incident light."

This means the new metamaterial is particularly well suited to use in solar cells, Atwater adds. "The fact that our NIM design is tunable means we could potentially tune its index response to better match the solar spectrum, allowing for the development of broadband wide-angle metamaterials that could enhance light collection in solar cells," he explains. "And the fact that the metamaterial has a wide-angle response is important because it means that it can 'accept' light from a broad range of angles. In the case of solar cells, this means more light collection and less reflected or 'wasted' light."

"This work stands out because, through careful engineering, greater simplicity has been achieved," says Ares Rosakis, chair of the Division of Engineering and Applied Science at Caltech and Theodore von Kármán Professor of Aeronautics and Mechanical Engineering.

In addition to Burgos and Atwater, the other authors on the Nature Materials paper, "A single-layer wide-angle negative index metamaterial at visible frequencies," are Rene de Waele and Albert Polman from the Foundation for Fundamental Research on Matter Institute for Atomic and Molecular Physics in Amsterdam. Their work was supported by the Energy Frontier Research Centers program of the Office of Science of the Department of Energy, the National Science Foundation, the Nederlandse Organisatie voor Wetenschappelijk Onderzoek, and "NanoNed," a nanotechnology program funded by the Dutch Ministry of Economic Affairs.

Visit the Caltech Media Relations website at http://media.caltech.edu

Lori Oliwenstein | EurekAlert!
Further information:
http://www.caltech.edu

Further reports about: Caltech Ferchau Engineering NIM Nature Immunology Science TV solar cells

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>