Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech-led team creates damage-tolerant metallic glass

13.01.2011
Amorphous palladium-based alloy demonstrates unprecedented level of combined toughness and strength; could be of use in biomedical implants

Glass is inherently strong, but when it cracks or otherwise fails, it proves brittle, shattering almost immediately. Steel and other metal alloys tend to be tough—they resist shattering—but are also relatively weak; they permanently deform and fail easily.

The ideal material, says Marios Demetriou, a senior research fellow at the California Institute of Technology (Caltech), has the advantage of being both strong and tough—a combination called damage tolerance, which is more difficult to come by than the layperson might think. "Strength and toughness are actually very different, almost mutually exclusive," he explains. "Generally, materials that are tough are also weak; those that are strong, are brittle."

And yet, Demetriou—along with William Johnson, Caltech's Ruben F. and Donna Mettler Professor of Engineering and Applied Science, and their colleagues—report in a recent issue of the journal Nature Materials that they have developed just such a material. Their new alloy—a combination of the noble metal palladium, a small fraction of silver, and a mixture of other metalloids—has shown itself in tests to have a combination of strength and toughness at a level that has not previously been seen in any other material.

"Our study demonstrates for the first time that this class of materials, the metallic glasses, has the capacity to become the toughest and strongest ever known," Demetriou says. Indeed, the researchers write in their paper, these materials allow for "pushing the envelope of damage tolerance accessible to a structural metal."

What gives metallic glasses their unusual qualities is the fact that they are made of metals—with the inherent toughness that comes with that class of material—but have the internal structure of glass, and thus its strength and hardness. (Despite its name, it is this internal structure that is the only glasslike thing about metallic glass: the material is not transparent, Demetriou notes, and is both optically and electronically like metal.)

The problem with trying to increase strength in ordinary metals is that their atoms are organized in a crystal lattice, Demetriou explains. "And whenever you try to make something as perfect as a crystal, inevitably you will create defects," he says. Those defects, under stress, become mobile, and other atoms move easily around them, producing permanent deformations. While this rearrangement around defects results in an ability to block or cap off an advancing crack, producing toughness, it also limits the strength of the material.

On the other hand, glass has an amorphous structure, its atoms scattered about without a specific discernible pattern. In metallic glasses—also called amorphous metals because of their structure—this results in an absence of the extended defects found in crystalline metals. The actual defects in glasses are generally much smaller in size and only become active when exposed to much higher stresses, resulting in higher strengths. However, this also means that the strategy used in ordinary metals to stop a crack from growing ever longer—the easy and rapid rearrangement of the atoms around defects into a sort of cap at the leading edge of a crack—is not available.

"When defects in the amorphous structure become active under stress, they coalesce into slim bands, called shear bands, that rapidly extend and propagate through the material," says Demetriou. "And when these shear bands evolve into cracks, the material shatters."

It was this tendency to shatter that was thought to be one of the limiting factors of metallic glasses, which were first developed in the 1960s at Caltech. The assumption was that, despite their many benefits, they could never match or exceed the toughness of the toughest steels.

But what the Caltech scientists found, much to their surprise, was that creating more of a problem could actually solve the problem. In the new palladium alloy, so many shear bands form when the material is put under stress that it "actually leads to higher toughness, because the bands interact and form networks that block crack propagation," Demetriou explains. In other words, the number of shear bands that form, intersect, and multiply at the tip of an evolved crack is so high that the crack is blocked and cannot travel very far. In essence, then, the shear bands act as a shield, preventing shattering. Thus, the palladium glass acts very much like the toughest of steels, using an analogous blocking mechanism of arresting cracks.

"And," Demetriou adds, "this high toughness does not come at the expense of strength. This material has both strength and toughness, which is why it falls so far outside what's previously been possible. That's why this material is so special."

The palladium alloy described in the paper could soon be of use in biomedical implants, says Demetriou. "One example is dental implants," Demetriou says. "Many noble-metal alloys, including palladium, are currently used in dentistry due to their chemical inertness and resistance to oxidation, tarnish, and corrosion. Owing to its superior damage tolerance, the present palladium glass can be thought of as a superior alternative to conventional palladium dental alloys. Plus, the absence of any elements considered toxic or allergenic—nickel, copper, aluminum—from the composition of this alloy will likely promote good biological compatibility."

The class of such tough metallic glasses potentially could be used in other structural applications like automotive and aerospace components, the team says. But this particular alloy is unlikely to be part of any large-scale manufacturing process. "It's prohibitively expensive," says Demetriou. "The cost is much too high for any large-scale, widespread use."

Still, he notes, the fact that it was created at all, with these particular properties, tells scientists that this level of toughness and strength is well within reach. Now it's just a matter of figuring out specifically what gives this alloy its unique damage tolerance, and how that can be replicated with an alloy containing less-expensive, less-precious metals.

In addition to Demetriou and Johnson, the other authors on the Nature Materials paper, "A Damage-Tolerant Glass," are Caltech graduate student Glenn Garrett, visitor in applied physics and materials science Joseph Schramm, and lecturer in applied physics and materials science Douglas Hofmann; Robert Ritchie from the Lawrence Berkeley National Laboratory (LBNL) and UC Berkeley; and Maximilien Launey, formerly of LBNL and now at the Cordis Corporation. Their work was supported by the National Science Foundation and the U.S. Department of Energy.

Deborah Williams-Hedges | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>