Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Butterfly wings + carbon nanotubes = new 'nanobiocomposite' material

29.08.2013
Leveraging the amazing natural properties of the Morpho butterfly's wings, scientists have developed a nanobiocomposite material that shows promise for wearable electronic devices, highly sensitive light sensors and sustainable batteries. A report on the new hybrid material appears in the journal ACS Nano.

Eijiro Miyako and colleagues explain that Morpho butterfly wings have natural properties that are beyond the capabilities of any current technology to reproduce artificially. In addition to being lightweight, thin and flexible, the butterfly's wings absorb solar energy, shed water quickly and are self-cleaning.

Miyako's group had been working with tiny cylinders of carbon termed carbon nanotubes (CNTs), and became fascinated with CNTs' unique electrical, mechanical, thermal and optical properties. Miyako's team set out to marry the wings and nanotubes to produce an all-new hybrid material.

They describe growing a honeycomb network of carbon nanotubes on Morpho butterfly wings, creating a composite material that could be activated with a laser. The resulting material heated up faster than the original components by themselves, exhibited high electrical conductivity and had the ability to copy DNA on its surface without absorbing it.

"Our present study highlights the important progress that has been made toward the development of smart nanobiomaterials for various applications such as digital diagnosis, soft wearable electronic devices, photosensors, and photovoltaic cells," the scientists state.

The authors acknowledge funding from the Japan Society for the Promotion of Science.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter Facebook

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Materials Sciences:

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

nachricht Multitasking monolayers
25.07.2017 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>