Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bringing Fiber Optics to Electronic Components


Chemist developing next-generation material

Fiber optics increased the speed and quantity of information that can be transmitted through the Internet by transforming electrical signals into pulsating light.

Photo by Eric Landwehr

The thin-film material in assistant professor Cheng Zhang’s hands may be the key to making fiber-optic components for computers and other electronic devices.

The same can be done within laptops and other devices by using organic materials containing chromophore as an active compound, according to South Dakota State University materials chemist Cheng Zhang. Components made from this organic material can provide a larger bandwidth and draw less power.

Zhang began working on electro-optical chromophores while earning his doctorate at the University of Southern California. In 2000, he and chemistry professor Larry Dalton developed the first electro-optical chromophore CLD1. The ‘C’ in the name stands for Cheng, while the LD is for Larry Dalton, he explained. The material was patented by Pacific Wave Communications, LLC, and sold by Sigma Aldrich.

Zhang has continued his work on chromophore since coming to SDSU in 2011 as an assistant professor in the chemistry and biochemistry department through support from the South Dakota Board of Regents.

Microscopic material
To create the material, chromophore—an organic compound that has color—is suspended in a soft yet tough material called a polymer, according to Zhang. A coating of this material is then typically placed on a glass or silicon substrate, much like making solar panels, and then used to make electro-optical devices, he explained. Using a polymer makes the resulting device easier to integrate with electronic circuitry.

The bipolar chromophores Zhang is developing are only 3 nanometers long--barely visible under the best electronic microscope. “The diameter of a human hair is about 20,000 times the length of a bi-polar chromophore,” he noted.

Insulating rings
These bi-polar chromophores act like magnets. When the tiny rods get too close together, they flip and stick together, Zhang explained. An electric field is applied to align the poles in the same direction; however, the more chromophores that are loaded into the material, the more difficult this becomes.

“This fundamental problem limits the concentration of chromophore that can be loaded into the polymer,” Zhang said.

His research work seeks to solve this problem by creating a protective ring around a portion of each rod to keep them apart. This may “prevent the formation of tight aggregates even at the highest concentration,” Zhang said.

He demonstrated this on the first ring-protected chromophore, PCR1, and is applying the strategy to current state-of-the-art chromophores.

Chromophore bleaching
When more rods are packed into the material, a new problem has emerged, according to Zhang. The material becomes too conductive, so when the current is applied to align the dipole, the chromophores burn out and die.

To solve the new problem, Zhang has added more insulating rings. If this effort is successful, the resulting material will have a higher electro-optic activity level, which will improve the material’s performance.

According to the industry standard, electro-optical materials should be able to withstand 185 degrees Fahrenheit for 2,000 hours while maintaining at least 90 percent of the initial activity. Designing this electro-optic material involves a trade-off between its thermal stability and electro-optic activity.

“If you improve one property, the other property gets sacrificed,” he said, “but we have to come up with a novel idea to minimize the trade-off.”

About South Dakota State University
Founded in 1881, South Dakota State University is the state’s Morrill Act land-grant institution as well as its largest, most comprehensive school of higher education. SDSU confers degrees from eight different colleges representing more than 175 majors, minors and specializations. The institution also offers 29 master’s degree programs, 13 Ph.D. and two professional programs.

The work of the university is carried out on a residential campus in Brookings, at sites in Sioux Falls, Pierre and Rapid City, and through Cooperative Extension offices and Agricultural Experiment Station research sites across the state.

Cheng Zhang | newswise
Further information:

Further reports about: Electronic LLC SDSU chromophore concentration initial materials

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>