Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bringing Fiber Optics to Electronic Components

30.04.2014

Chemist developing next-generation material

Fiber optics increased the speed and quantity of information that can be transmitted through the Internet by transforming electrical signals into pulsating light.


Photo by Eric Landwehr

The thin-film material in assistant professor Cheng Zhang’s hands may be the key to making fiber-optic components for computers and other electronic devices.

The same can be done within laptops and other devices by using organic materials containing chromophore as an active compound, according to South Dakota State University materials chemist Cheng Zhang. Components made from this organic material can provide a larger bandwidth and draw less power.

Zhang began working on electro-optical chromophores while earning his doctorate at the University of Southern California. In 2000, he and chemistry professor Larry Dalton developed the first electro-optical chromophore CLD1. The ‘C’ in the name stands for Cheng, while the LD is for Larry Dalton, he explained. The material was patented by Pacific Wave Communications, LLC, and sold by Sigma Aldrich.

Zhang has continued his work on chromophore since coming to SDSU in 2011 as an assistant professor in the chemistry and biochemistry department through support from the South Dakota Board of Regents.

Microscopic material
To create the material, chromophore—an organic compound that has color—is suspended in a soft yet tough material called a polymer, according to Zhang. A coating of this material is then typically placed on a glass or silicon substrate, much like making solar panels, and then used to make electro-optical devices, he explained. Using a polymer makes the resulting device easier to integrate with electronic circuitry.

The bipolar chromophores Zhang is developing are only 3 nanometers long--barely visible under the best electronic microscope. “The diameter of a human hair is about 20,000 times the length of a bi-polar chromophore,” he noted.

Insulating rings
These bi-polar chromophores act like magnets. When the tiny rods get too close together, they flip and stick together, Zhang explained. An electric field is applied to align the poles in the same direction; however, the more chromophores that are loaded into the material, the more difficult this becomes.

“This fundamental problem limits the concentration of chromophore that can be loaded into the polymer,” Zhang said.

His research work seeks to solve this problem by creating a protective ring around a portion of each rod to keep them apart. This may “prevent the formation of tight aggregates even at the highest concentration,” Zhang said.

He demonstrated this on the first ring-protected chromophore, PCR1, and is applying the strategy to current state-of-the-art chromophores.

Chromophore bleaching
When more rods are packed into the material, a new problem has emerged, according to Zhang. The material becomes too conductive, so when the current is applied to align the dipole, the chromophores burn out and die.

To solve the new problem, Zhang has added more insulating rings. If this effort is successful, the resulting material will have a higher electro-optic activity level, which will improve the material’s performance.

According to the industry standard, electro-optical materials should be able to withstand 185 degrees Fahrenheit for 2,000 hours while maintaining at least 90 percent of the initial activity. Designing this electro-optic material involves a trade-off between its thermal stability and electro-optic activity.

“If you improve one property, the other property gets sacrificed,” he said, “but we have to come up with a novel idea to minimize the trade-off.”

About South Dakota State University
Founded in 1881, South Dakota State University is the state’s Morrill Act land-grant institution as well as its largest, most comprehensive school of higher education. SDSU confers degrees from eight different colleges representing more than 175 majors, minors and specializations. The institution also offers 29 master’s degree programs, 13 Ph.D. and two professional programs.

The work of the university is carried out on a residential campus in Brookings, at sites in Sioux Falls, Pierre and Rapid City, and through Cooperative Extension offices and Agricultural Experiment Station research sites across the state.

Cheng Zhang | newswise
Further information:
http://www.sdstate.edu

Further reports about: Electronic LLC SDSU chromophore concentration initial materials

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>