Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brighter future for carbon dots

17.09.2012
Work led by Amita Pathak at the Indian Institute of Technology has produced water-soluble C-dots that selectively emit light across the entire visible range without any surface coating. The properties of these new C-dots make them ideal for a variety of bioimaging applications and for medical diagnostics.
Carbon dots (C-dots) are light-emitting (luminescent) nanoparticles that can be used to track biological processes inside cells. They are less toxic than similar alternatives, making them more suitable for use in live biological systems, but the light-emitting properties of those currently made are not ideal.

A variety of approaches have been used to make C-dots, but most require coating of the particles with other molecules to achieve useful luminescence. Now, work led by Amita Pathak at the Indian Institute of Technology has produced water-soluble C-dots that selectively emit light across the entire visible range without any surface coating.

The researchers produced these C-dots by breaking down the carbohydrate dextrin with microwaves. The resulting C-dots emitted different colours of light when excited by specific wavelengths, even without coating them. Exactly how this multi-coloured luminescence arises is unclear, but it allows precise control of the light emission that can be tailored to specific needs.

To ensure that the C-dots were not toxic, the team added different concentrations of the nanoparticles to cultured cells. After three days, they determined how many cells had survived. Increasing concentrations of C-dots made little difference to cell survival, showing that the C-dots are not toxic and could therefore be used in live tissue.

The properties of these new C-dots make them ideal for a variety of bioimaging applications and for medical diagnostics. The same researchers have already begun to look at how they may be used to investigate interactions between drugs and cells.
References:

Nagaprasad Puvvada, B N Prashanth Kumar, Suraj Konar, Himani Kalita, Mahitosh Mandal and Amita Pathak (2012) “Synthesis of biocompatible multicolor luminescent carbon dots for bioimaging applications” Sci. Technol. Adv. Mater. Vol. 13 p. 045008

DOI: http://dx.doi.org/10.1088/1468-6996/13/4/045008

Media contact:

Mikiko Tanifuji
National Institute for Materials Science
Tsukuba, Japan
E-mail: stam_office@nims.go.jp
Tel. +81-(0)29-859-2494

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>