Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough method for making Janus or patchy capsules

26.05.2014

Tiny capsules with different substances on their surface could be useful in medicine and materials technology

Hollow capsules that have a selectively permeable shell are promising candidates as tiny containers for molecules, particles or bubbles, and are becoming increasingly important in a wide variety of applications. But making these kinds of capsules with more than one kind of substance on their shells has been challenging – until now.


Paul Dommersnes, left, from the University of Paris, Diderot, and Jon Otto Fossum, from the Norwegian University of Science and Technology, were among the team that has come up with a novel way to create patchy capsules.

Credit: Photo: Per Harold Olsen

In a article in the latest edition of Nature Communications, NTNU researcher Jon Otto Fossum and Paul Dommersnes from the University of Paris, Diderot, were part of a team that showed that both Janus and more advanced patchy capsules can be assembled by combining electro-coalescence and electro-hydrodynamic flow in leaky dielectric emulsion drops. This technique can be used with any type of insulating or weakly conductive particles.

Their work is the realization of one possible direction foreseen by the same researchers in a publication in Nature Communications in 2013.

Hollow capsules with two or more substances on their surface are able to organize themselves in specific ways, which means they could be used to grow human skin or other body tissues, or to make porous tissues and composites. They can also be used to transport a variety of substances and release them in specific environments.

Janus capsules, named for the two-faced Roman god, have just two different substances in their shells. They are a sub-group of patchy capsules, which can have more than two different substances in their shells. The researchers were able to make both Janus capsules, with two different substances, and patchy capsules, which had stripes or flecks on them.

Janus and patchy capsules are distinct from Janus and patchy particles, which are solid. These capsules combine the characteristics of Janus or patchy particles, and those of capsules such as colloidosomes.

The different characteristics on the shells of the capsules make them attractive to each other in different ways, depending on the composition of the capsule shells, which means they can create scaffolds suitable for biomedical applications, for assembling electric circuits or optical structures such as photonic crystals, and as vehicles for liquid or molecular transport.

The researchers foresee that their route for designing patchy capsules will facilitate the foundation for many advanced applications, for example, by using microfluidic methods.

###

The article "Electroformation of Janus and patchy capsules" is in Nature Communications 5:3945 (2014), DOI: 10.1038/ncomms4945.

It is open access and can be viewed at:

http://www.nature.com/ncomms/2014/140523/ncomms4945/full/ncomms4945.html

Jon Otto Fossum | Eurek Alert!

Further reports about: Breakthrough Janus capsule characteristics methods substances variety

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>