Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough method for making Janus or patchy capsules

26.05.2014

Tiny capsules with different substances on their surface could be useful in medicine and materials technology

Hollow capsules that have a selectively permeable shell are promising candidates as tiny containers for molecules, particles or bubbles, and are becoming increasingly important in a wide variety of applications. But making these kinds of capsules with more than one kind of substance on their shells has been challenging – until now.


Paul Dommersnes, left, from the University of Paris, Diderot, and Jon Otto Fossum, from the Norwegian University of Science and Technology, were among the team that has come up with a novel way to create patchy capsules.

Credit: Photo: Per Harold Olsen

In a article in the latest edition of Nature Communications, NTNU researcher Jon Otto Fossum and Paul Dommersnes from the University of Paris, Diderot, were part of a team that showed that both Janus and more advanced patchy capsules can be assembled by combining electro-coalescence and electro-hydrodynamic flow in leaky dielectric emulsion drops. This technique can be used with any type of insulating or weakly conductive particles.

Their work is the realization of one possible direction foreseen by the same researchers in a publication in Nature Communications in 2013.

Hollow capsules with two or more substances on their surface are able to organize themselves in specific ways, which means they could be used to grow human skin or other body tissues, or to make porous tissues and composites. They can also be used to transport a variety of substances and release them in specific environments.

Janus capsules, named for the two-faced Roman god, have just two different substances in their shells. They are a sub-group of patchy capsules, which can have more than two different substances in their shells. The researchers were able to make both Janus capsules, with two different substances, and patchy capsules, which had stripes or flecks on them.

Janus and patchy capsules are distinct from Janus and patchy particles, which are solid. These capsules combine the characteristics of Janus or patchy particles, and those of capsules such as colloidosomes.

The different characteristics on the shells of the capsules make them attractive to each other in different ways, depending on the composition of the capsule shells, which means they can create scaffolds suitable for biomedical applications, for assembling electric circuits or optical structures such as photonic crystals, and as vehicles for liquid or molecular transport.

The researchers foresee that their route for designing patchy capsules will facilitate the foundation for many advanced applications, for example, by using microfluidic methods.

###

The article "Electroformation of Janus and patchy capsules" is in Nature Communications 5:3945 (2014), DOI: 10.1038/ncomms4945.

It is open access and can be viewed at:

http://www.nature.com/ncomms/2014/140523/ncomms4945/full/ncomms4945.html

Jon Otto Fossum | Eurek Alert!

Further reports about: Breakthrough Janus capsule characteristics methods substances variety

More articles from Materials Sciences:

nachricht Graphene is strong, but is it tough?
05.02.2016 | DOE/Lawrence Berkeley National Laboratory

nachricht New Type of Nanowires, Built with Natural Gas Heating
05.02.2016 | Ulsan National Institute of Science and Technology (UNIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>