Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking the ice before it begins

15.11.2010
Nanostructured materials repel water droplets before they have a chance to freeze

Engineers from Harvard University have designed and demonstrated ice-free nanostructured materials that literally repel water droplets before they even have the chance to freeze.

The finding, reported online in ACS Nano on November 9th, could lead to a new way to keep airplane wings, buildings, powerlines, and even entire highways free of ice during the worst winter weather. Moreover, integrating anti-ice technology right into a material is more efficient and sustainable than conventional solutions like chemical sprays, salt, and heating.

A team led by Joanna Aizenberg, Amy Smith Berylson Professor of Materials Science at the Harvard School of Engineering and Applied Sciences (SEAS) and a Core Member of the Wyss Institute for Biologically Inspired Engineering at Harvard, focused on preventing rather than fighting ice buildup.

"We wanted to take a completely different tact and design materials that inherently prevent ice formation by repelling the water droplets," says Aizenberg. "From past studies, we also realized that the formation of ice is not a static event. The crucial approach was to investigate the entire dynamic process of how droplets impact and freeze on a supercooled surface."

For initial inspiration, the researchers turned to some elegant solutions seen in nature. For example, mosquitos can defog their eyes, and water striders can keep their legs dry thanks to an array of tiny bristles that repel droplets by reducing the surface area each one encounters.

"Freezing starts with droplets colliding with a surface," explains Aizenberg. "But very little is known about what happens when droplets hit surfaces at low temperatures."

To gain a detailed understanding of the process, the researchers watched high-speed videos of supercooled droplets hitting surfaces that were modeled after those found in nature. They saw that when a cold droplet hits the nanostructured surface, it first spreads out, but then the process runs in reverse: the droplet retracts to a spherical shape and bounces back off the surface before ever having a chance to freeze.

By contrast, on a smooth surface without the structured properties, a droplet remains spread out and eventually freezes.

"We fabricated surfaces with various geometries and feature sizes—bristles, blades, and interconnected patterns such as honeycombs and bricks—to test and understand parameters critical for optimization," says Lidiya Mishchenko, a graduate student in Aizenberg's lab and first author of the paper.

The use of such precisely engineered materials enabled the researchers to model the dynamic behavior of impacting droplets at an amazing level of detail, leading them to create a better design for ice-preventing materials.

Another important benefit of testing a wide variety of structures, Mishchenko adds, was that it allowed the team to optimize for pressure-stability. They discovered that the structures composed of interconnected patterns were ideally suited for stable, liquid-repelling surfaces that can withstand high-impact droplet collisions, such as those encountered in driving rain or by planes in flight.

The nanostructured materials prevent the formation of ice even down to temperatures as low as to degrees Celsius. Below that, due to the reduced contact area that prevents the droplets from fully wetting the surface, any ice that forms does not adhere well and is much easier to remove than the stubborn sheets that can form on flat surfaces.

"We see this approach as a radical and much needed shift in anti-ice technologies," says Aizenberg. "The concept of friction-free surfaces that deflect supercooled water droplets before ice nucleation can even occur is more than just a theory or a proof-of-principle experiments. We have begun to test this promising technology in real-world settings to provide a comprehensive framework for optimizing these robust ice-free surfaces for a wide range of applications, each of which may have a specific set of performance requirements."

In comparison with traditional ice prevention or removal methods like salting or heating, the nanostructured materials approach is efficient, non-toxic, and environmentally friendly. Further, when chemicals are used to de-ice a plane, for example, they can be washed away into the environment and their disposal must be carefully monitored. Similarly, salt on roads can lead to corrosion and run-off problems in local water sources.

The researchers anticipate that with their improved understanding of the ice forming process, a new type of coating integrated directly into a variety of materials could soon be developed and commercialized.

In addition to Aizenberg, who is also the Susan S. and Kenneth L. Wallach Professor at the Radcliffe Institute for Advanced Study and a Professor of Chemistry and Chemical Biology at Harvard, and Mishchenko, the co-authors of the paper included Benjamin Hatton and Vaibhav Bahadur, both at SEAS and Wyss, and Ashley Taylor and Tom Krupenkin, both at the University of Wisconsin-Madison.

The researchers acknowledge L. Stirling and A. Grinthal for their valuable contribution and funding from DARPA (Award Number HR0011-08-C-0114); the Wyss Institute for Biologically Inspired Engineering at Harvard University; and the U.S. Department of Homeland Security (DHS) Scholarship and Fellowship Program.

Michael Patrick Rutter | EurekAlert!
Further information:
http://www.harvard.edu/

More articles from Materials Sciences:

nachricht Breaking bad metals with neutrons
16.01.2018 | DOE/Argonne National Laboratory

nachricht White graphene makes ceramics multifunctional
16.01.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Morbid Obesity: Gastric Bypass and Sleeve Gastrectomy Are Comparable

17.01.2018 | Health and Medicine

Researchers identify new way to unmask melanoma cells to the immune system

17.01.2018 | Health and Medicine

Genetic discovery may help better identify children at risk for type 1 diabetes

17.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>