Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking the ice before it begins

15.11.2010
Nanostructured materials repel water droplets before they have a chance to freeze

Engineers from Harvard University have designed and demonstrated ice-free nanostructured materials that literally repel water droplets before they even have the chance to freeze.

The finding, reported online in ACS Nano on November 9th, could lead to a new way to keep airplane wings, buildings, powerlines, and even entire highways free of ice during the worst winter weather. Moreover, integrating anti-ice technology right into a material is more efficient and sustainable than conventional solutions like chemical sprays, salt, and heating.

A team led by Joanna Aizenberg, Amy Smith Berylson Professor of Materials Science at the Harvard School of Engineering and Applied Sciences (SEAS) and a Core Member of the Wyss Institute for Biologically Inspired Engineering at Harvard, focused on preventing rather than fighting ice buildup.

"We wanted to take a completely different tact and design materials that inherently prevent ice formation by repelling the water droplets," says Aizenberg. "From past studies, we also realized that the formation of ice is not a static event. The crucial approach was to investigate the entire dynamic process of how droplets impact and freeze on a supercooled surface."

For initial inspiration, the researchers turned to some elegant solutions seen in nature. For example, mosquitos can defog their eyes, and water striders can keep their legs dry thanks to an array of tiny bristles that repel droplets by reducing the surface area each one encounters.

"Freezing starts with droplets colliding with a surface," explains Aizenberg. "But very little is known about what happens when droplets hit surfaces at low temperatures."

To gain a detailed understanding of the process, the researchers watched high-speed videos of supercooled droplets hitting surfaces that were modeled after those found in nature. They saw that when a cold droplet hits the nanostructured surface, it first spreads out, but then the process runs in reverse: the droplet retracts to a spherical shape and bounces back off the surface before ever having a chance to freeze.

By contrast, on a smooth surface without the structured properties, a droplet remains spread out and eventually freezes.

"We fabricated surfaces with various geometries and feature sizes—bristles, blades, and interconnected patterns such as honeycombs and bricks—to test and understand parameters critical for optimization," says Lidiya Mishchenko, a graduate student in Aizenberg's lab and first author of the paper.

The use of such precisely engineered materials enabled the researchers to model the dynamic behavior of impacting droplets at an amazing level of detail, leading them to create a better design for ice-preventing materials.

Another important benefit of testing a wide variety of structures, Mishchenko adds, was that it allowed the team to optimize for pressure-stability. They discovered that the structures composed of interconnected patterns were ideally suited for stable, liquid-repelling surfaces that can withstand high-impact droplet collisions, such as those encountered in driving rain or by planes in flight.

The nanostructured materials prevent the formation of ice even down to temperatures as low as to degrees Celsius. Below that, due to the reduced contact area that prevents the droplets from fully wetting the surface, any ice that forms does not adhere well and is much easier to remove than the stubborn sheets that can form on flat surfaces.

"We see this approach as a radical and much needed shift in anti-ice technologies," says Aizenberg. "The concept of friction-free surfaces that deflect supercooled water droplets before ice nucleation can even occur is more than just a theory or a proof-of-principle experiments. We have begun to test this promising technology in real-world settings to provide a comprehensive framework for optimizing these robust ice-free surfaces for a wide range of applications, each of which may have a specific set of performance requirements."

In comparison with traditional ice prevention or removal methods like salting or heating, the nanostructured materials approach is efficient, non-toxic, and environmentally friendly. Further, when chemicals are used to de-ice a plane, for example, they can be washed away into the environment and their disposal must be carefully monitored. Similarly, salt on roads can lead to corrosion and run-off problems in local water sources.

The researchers anticipate that with their improved understanding of the ice forming process, a new type of coating integrated directly into a variety of materials could soon be developed and commercialized.

In addition to Aizenberg, who is also the Susan S. and Kenneth L. Wallach Professor at the Radcliffe Institute for Advanced Study and a Professor of Chemistry and Chemical Biology at Harvard, and Mishchenko, the co-authors of the paper included Benjamin Hatton and Vaibhav Bahadur, both at SEAS and Wyss, and Ashley Taylor and Tom Krupenkin, both at the University of Wisconsin-Madison.

The researchers acknowledge L. Stirling and A. Grinthal for their valuable contribution and funding from DARPA (Award Number HR0011-08-C-0114); the Wyss Institute for Biologically Inspired Engineering at Harvard University; and the U.S. Department of Homeland Security (DHS) Scholarship and Fellowship Program.

Michael Patrick Rutter | EurekAlert!
Further information:
http://www.harvard.edu/

More articles from Materials Sciences:

nachricht Reliable molecular toggle switch developed
30.03.2017 | Karlsruher Institut für Technologie (KIT)

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>