Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Borophene: A very promising 2D material


"Borophene", a 2-dimensional layer of boron atoms, holds the electronic properties which researchers try to implement in graphene – and even more.

In the latest issue of Science, Hermann Sachdev, a researcher from Professor Müllen’s department at the Max Planck Institute for Polymer Research (MPI-P) in Mainz, Germany discusses the outlooks of borophene layers. Borophene - now experimentally proven to exist - consists of a two-dimensional layer of boron atoms and has a structure similar to graphene.

Detail of a 2D borophene layer

Hermann Sachdev / MPI-P

It shows electronic properties comparable with those of graphene. Its strongly bound atoms make it resistant to mechanical impact. With remarkable properties, this material will possibly play a key role in future 2D materials research and thin film technology.

In the periodic system, boron is located between metallic beryllium and nonmetallic carbon which classifies it as a semimetal. It displays a pronounced ability to form not only stable electron-deficient bonds, but also strong covalent bonds.

The latter are responsible for boron and borides being among the hardest materials known. The 2D borophene layers can be considered as an intermediate between fully covalently bound graphene and substrate stabilized 2D materials like silicene or germanene. The borophene band structure can be easily tuned by e.g. substrate interactions or surface modifications.

“With these properties, borophene could soon find its way into new applications – ranging for example from electronic sensors and semiconductors to tribological devices”, says Herman Sachdev.

It indeed looks like a very promising material yet its synthesis is currently more complicated than that of graphene and requires further investigation.

Borophene will not become the material of choice to replace graphene in bulk applications like batteries or inks. However it will definitely have its share in the semiconductor device technology and tribology, the science of surfaces interacting in motion.

Weitere Informationen: - Press release and original publication - Max Planck Institute for Polymer Research

Natacha Bouvier | Max-Planck-Institut für Polymerforschung

More articles from Materials Sciences:

nachricht Researchers demonstrate existence of new form of electronic matter
15.03.2018 | University of Illinois at Urbana-Champaign

nachricht Boron can form a purely honeycomb, graphene-like 2-D structure
15.03.2018 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>