Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boron nitride foam soaks up carbon dioxide

17.08.2017

Rice University scientists lead effort to make novel 3-D material

Rice University materials scientists have created a light foam from two-dimensional sheets of hexagonal-boron nitride (h-BN) that absorbs carbon dioxide.


A microscope image shows the high surface area of hexagonal-boron nitride foam glued together with polyvinyl alcohol. The tough, light foam can be used to soak up carbon dioxide or as a material to shield biological tissues from lasers.

Credit: Ajayan Research Group/Rice University

They discovered freeze-drying h-BN turned it into a macro-scale foam that disintegrates in liquids. But adding a bit of polyvinyl alcohol (PVA) into the mix transformed it into a far more robust and useful material.

The foam is highly porous and its properties can be tuned for use in air filters and as gas absorption materials, according to researchers in the Rice lab of materials scientist Pulickel Ajayan.

Their work appears in the American Chemical Society journal ACS Nano.

The polyvinyl alcohol serves as a glue. Mixed into a solution with flakes of h-BN, it binds the junctions as the microscopic sheets arrange themselves into a lattice when freeze-dried. The one-step process is scalable, the researchers said.

"Even a very small amount of PVA works," said co-author and Rice postdoctoral researcher Chandra Sekhar Tiwary. "It helps make the foam stiff by gluing the interconnects between the h-BN sheets - and at the same time, it hardly changes the surface area at all."

In molecular dynamics simulations, the foam adsorbed 340 percent of its own weight in carbon dioxide. The greenhouse gas can be evaporated out of the material, which can be reused repeatedly, Tiwary said. Compression tests showed the foam got stiffer through 2,000 cycles as well.

And when coated with PDMS, another polymer, the foam becomes an effective shield from lasers that could be used in biomedical, electronics and other applications, he said.

Ultimately, the researchers want to gain control over the size of the material's pores for specific applications, like separating oil from water. Simulations carried out by co-author Cristiano Woellner, a joint postdoctoral researcher at Rice and the State University of Campinas, Brazil, could serve as a guide for experimentalists.

"It's important to join experiments and theoretical calculations to see the mechanical response of this composite," Woellner said. "This way, experimentalists will see in advance how they can improve the system."

Rice graduate student Peter Owuor is lead author of the paper. Co-authors are Ok-Kyung Park, a visiting scholar at Rice and a postdoctoral researcher at Chonbuk National University, Republic of Korea; Rice postdoctoral researchers Almaz Jalilov and Rodrigo Villegas Salvatierra and graduate students Luong Xuan Duy, Sandhya Susarla and Jarin Joyner; Rice alumnus Sehmus Ozden, now a postdoctoral fellow at Los Alamos National Laboratory; Robert Vajtai, a senior faculty fellow at Rice; Jun Lou, a Rice professor of materials science and nanoengineering; and James Tour, Rice's T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering; and Professor Douglas Galvão of the State University of Campinas. Ajayan is chair of Rice's Department of Materials Science and NanoEngineering, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry.

The Air Force Office of Scientific Research and its Multidisciplinary University Research Initiative funded the research.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/acsnano.7b03291

DOI: 10.1021/acsnano.7b03291

This news release can be found online at http://news.rice.edu/2017/08/16/boron-nitride-foam-soaks-up-carbon-dioxide-2/

Follow Rice News and Media Relations via Twitter @RiceUNews

Video:

https://youtu.be/vijzvef8KPc

CAPTION: A molecular dynamics simulation shows carbon dioxide (red and teal) molecules being adsorbed by a hexagonal-boron nitride (yellow and blue) foam held together by polyvinyl alcohol (white). Researchers at Rice created a macroscale foam that may be useful for capturing carbon dioxide. (Credit: Cristiano Woellner/Rice University/State University of Campinas)

Related materials:

Tough foam from tiny sheets: http://news.rice.edu/2014/07/29/tough-foam-from-tiny-sheets-2/

Ajayan Research Group: http://ajayan.rice.edu

Galvão bio: http://www.escience.org.br/douglas.galvao

Rice Department of Materials Science and NanoEngineering: https://msne.rice.edu

Images for download:

http://news.rice.edu/files/2017/08/0821_FOAM-1-WEB-1w27ar1.jpg

Blocks of hexagonal-boron nitride foam treated with polyvinyl alcohol proved able to adsorb more than three times its weight in carbon dioxide. The reusable material was created at Rice University. (Credit: Ajayan Research Group/Rice University)

http://news.rice.edu/files/2017/08/0821_FOAM-2-WEB-1xv05ti.jpg

A microscope image shows the high surface area of hexagonal-boron nitride foam glued together with polyvinyl alcohol. The tough, light foam can be used to soak up carbon dioxide or as a material to shield biological tissues from lasers. (Credit: Ajayan Research Group/Rice University)

http://news.rice.edu/files/2017/08/0821_FOAM-3-WEB-235rmpn.jpg

A molecular dynamics simulation shows polyvinyl alcohol molecules of carbon (teal), oxygen (red) and hydrogen (white) binding two-dimensional sheets of hexagonal-boron nitride (blue and yellow). The reusable material created at Rice University can sequester more than three times its weight in carbon dioxide. (Credit: Ajayan Research Group/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Jeff Falk
713-348-6775
jfalk@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu

Mike Williams | EurekAlert!

Further reports about: Boron Credit Materials Science NanoEngineering PVA carbon dioxide molecular dynamics

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>