Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone tissue engineering: Attaching proteins for better regeneration

27.07.2012
Researchers in Japan demonstrate a new protein binding approach for effectively promoting bone regeneration.

Current treatments for bone defects and bone tissue regeneration have significant limitations. Now a new method that immobilises a fusion protein in a hybrid collagen-polymer supportive scaffold shows promise for bone tissue engineering.

Guoping Chen, Yoshihiro Ito and researchers at the Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, RIKEN, the Immuno-Biological Laboratories Co., Ltd, and the National Institute for Child Health and Development, Tokyo, added a collagen-binding domain from fibronectin to BMP4, a protein that promotes bone regeneration.

The new fusion protein, BMP4-CBD, was used in a scaffold of natural collagen sponge and a strong synthetic polymer, poly(lactic-co-glycolic acid) (PLGA). The scaffold provides space and support for the bone cell growth.

The researchers investigated the BMP4-CBD immobilized on the collagen-PLGA scaffold cultured in vivo for four weeks. They compared the approach with a range of controls including scaffolds with wild-type BMP4 without the collagen-binding domain and scaffolds with just the collagen-binding domain. The expression of specific and non-specific osteogenetic markers used as indicators of bone tissue regeneration was much higher for BMP4-CBD. Using BMP4-CBD also initiated calcification.

“These effects should be attributed to the retention of more effective molecules due to the specific binding of the fusion BMP4 to the collagen,” say the authors. The stimulation effect of the protein promoting the bone regeneration is thus maintained over a longer period. The research may benefit patients suffering from bone defects in the future.

Further information

Publications and Affiliation:

Hongxu Lu1, Naoki Kawazoe1, Takashi Kitajima2, Yuka Myoken3, Masahiro Tomita 3, Akihiro Umezawa4, Guoping Chen1*, Yoshihiro Ito2* Spatial immobilization of bone morphogenetic protein-4 in a collagen-PLGA hybrid scaffold for enhanced osteoinductivity. Biomaterials, 33, 6140–6146, (2012).

1. Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
2. Nano Medical Engineering Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan
3. Neosilk Laboratory, Immuno-Biological Laboratories Co., Ltd., 3-13-60 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
4. National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan

* Corresponding authors


Contact details

International Center for Materials Nanoarchitectonics(WPI-MANA)
1-1 Namiki, Tsukuba-shi Ibaraki, 305-0044 Japan
Email: Guoping Chen, Ph.D Guoping.CHENnims.go.jp
Telephone: +81-29-860-4496

Adarsh Sandhu | Research asia research news
Further information:
http://www.nims.go.jp/mana/

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>