Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bonded rotor blade joints: Improved test method reduces scale-up risks

25.02.2011
After a five year term, the EU funded UpWind research project is now drawing to a close. One aim of this project was to develop a more comprehensive test for bond lines used in the manufacturing process for rotor blades.

Prior to the production of prototypes, adhesive tests have hitherto only been undertaken on coupon specimens. Researchers at Fraunhofer IWES, together with industrial partners, have now developed a subcomponent test as an intermediate step. This provides additional understanding of material behavior on a structure-relevant scale. This more comprehensive approach reduces uncertainty for scale-up process to subcomponent design stage.

The aim of the UpWind project was to develop accurate, verified tools and component concepts for very large wind turbines (8-10 MW), both onshore and offshore. Ever longer rotor blades are being used for multi-megawatt wind turbines. They usually consist of two half-shells, which are bonded together with special adhesive. The loads that act on the bonded joint and the requirement for a service life of 20 years put extreme demands on the bond line. The latter can have a thickness of about 10 millimeters and a length of about 60 meters.

More realistic load distribution
Up until now ca. 15 centimeter long coupon specimens were certified prior to the prototype stage. However, due to production and geometry effects, the load distribution on these specimens differed considerably from the actual load distribution on the rotor blade prototypes.
As part of the EU funded UpWind project, scientists from the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) investigated whether a so-called beam test can meet these requirements. These activities were

enhanced by parallel industry projects done with Henkel. A “beam in bending” test methodology that was has been developed in collaboration with Henkel was the starting point of the improvement.

“Knowledge of the physical properties of our products under in-service conditions is essential for successful applications,” explains Felix Kleiner, Manager of Adhesive Engineering at Henkel AG & Co. KGaA. “The new test method allows economic evaluation of different adhesives and design variations”. The base model that was used for this was an I-beam - a model which takes into account two bonded seams between spar cap - shear web - spar cap.

Enhanced understanding of material behavior
These tests provided information about the mechanisms of material fatigue and material failure. “In order to investigate the mechanical behavior of the adhesive in a relatively large adhesive volume, the beams were designed to have a critical section”, says Florian Sayer, Team Leader of "Component and Material Testing" at Fraunhofer IWES. This enhanced understanding of material behavior is being utilized in a follow-up research project to scrutinise further options for bond line structuring that will be summed up in a detailed catalogue. Moreover, a simplified numerical beam model for simulating material fatigue at the bonded seam will be developed. The beam test method that was validated in the project is available for interested industrial parties.

Uwe Krengel | Fraunhofer-Institut
Further information:
http://www.upwind.eu
http://www.iwes.fraunhofer.de

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>