Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomaterials: Nestled in

13.10.2011
Multi-compartment globular structures assembled from polymer-based materials may soon serve as cell prototypes

The cell is a host of many complex reaction pathways. These pathways usually do not interfere with each other because they are contained within membrane-bound compartments, known as organelles. The lipid membrane is extremely selective—only allowing certain signalling molecules to permeate through—and plays an important role in biological processes, such as protein synthesis and the regulation of enzymatic reactions.

Madhavan Nallani from the A*STAR Institute of Materials Research and Engineering and co-workers¹ have now synthesized a new type of multi-compartment structure known as a polymersome, which mimics cellular compartmentalization through the use of self-assembling polymers.

Although many researchers have created artificial structures designed to imitate cells, their efforts have primarily been restricted to lipid and polymer-based structures with only one compartment. Nallani and his team designed a system consisting of two compartments self-assembled sequentially. “Most importantly, the membranes of different compartments are made from different materials,” Nallani says. As a consequence of this unique feature, the properties of the membranes can be tuned.

To make the polymersomes, the team opted for amphiphilic block copolymers—polymers composed of subunits with opposite affinity to water. Nallani explains that this difference in wettability is what drives the copolymers to self-organise into compartments. “One of the challenges that we encountered is the selection of materials to form such architectures,” he adds.

The researchers first synthesized single-compartment particles using one copolymer. They then entrapped each of these first structures in a second shell by adding a solution containing another type of copolymer. In the resulting multi-compartmentalized architectures, the inner particle consisted of a tightly packed, low-permeability membrane and was surrounded by a semi-permeable outer membrane that lets small molecules through.

Nallani and his team tested the selectivity of the compartment membranes for the encapsulation of biomolecules. As a proof of concept, they encased one kind of fluorescent protein that emits green light and another variety that displays red-light emission in the polymersomes. The inner part of the particles emitted green light while the outer compartment emitted red light (see image). The result suggests that the proteins were localized in two separate sections according to their type.

“Our system may add value in applications such as drug delivery and multi-enzyme biosynthesis,” says Nallani. The researchers are currently designing compartments that allow different components to mix just before reaching target cells. They are also introducing membrane proteins within these compartments that may facilitate the transport of products formed in one compartment to another.

Fu, Z., Ochsner, M. A., de Hoog, H.-P. M., Tomczak, N. & Nallani, M. Multicompartmentalized polymersomes for selective encapsulation of biomacromolecules. Chemical Communications 47, 2862–2864 (2011).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/
http://www.researchsea.com

Further reports about: Biomaterial biological process green light

More articles from Materials Sciences:

nachricht ADIR Project: Lasers Recover Valuable Materials
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>