Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomaterials: Nestled in

13.10.2011
Multi-compartment globular structures assembled from polymer-based materials may soon serve as cell prototypes

The cell is a host of many complex reaction pathways. These pathways usually do not interfere with each other because they are contained within membrane-bound compartments, known as organelles. The lipid membrane is extremely selective—only allowing certain signalling molecules to permeate through—and plays an important role in biological processes, such as protein synthesis and the regulation of enzymatic reactions.

Madhavan Nallani from the A*STAR Institute of Materials Research and Engineering and co-workers¹ have now synthesized a new type of multi-compartment structure known as a polymersome, which mimics cellular compartmentalization through the use of self-assembling polymers.

Although many researchers have created artificial structures designed to imitate cells, their efforts have primarily been restricted to lipid and polymer-based structures with only one compartment. Nallani and his team designed a system consisting of two compartments self-assembled sequentially. “Most importantly, the membranes of different compartments are made from different materials,” Nallani says. As a consequence of this unique feature, the properties of the membranes can be tuned.

To make the polymersomes, the team opted for amphiphilic block copolymers—polymers composed of subunits with opposite affinity to water. Nallani explains that this difference in wettability is what drives the copolymers to self-organise into compartments. “One of the challenges that we encountered is the selection of materials to form such architectures,” he adds.

The researchers first synthesized single-compartment particles using one copolymer. They then entrapped each of these first structures in a second shell by adding a solution containing another type of copolymer. In the resulting multi-compartmentalized architectures, the inner particle consisted of a tightly packed, low-permeability membrane and was surrounded by a semi-permeable outer membrane that lets small molecules through.

Nallani and his team tested the selectivity of the compartment membranes for the encapsulation of biomolecules. As a proof of concept, they encased one kind of fluorescent protein that emits green light and another variety that displays red-light emission in the polymersomes. The inner part of the particles emitted green light while the outer compartment emitted red light (see image). The result suggests that the proteins were localized in two separate sections according to their type.

“Our system may add value in applications such as drug delivery and multi-enzyme biosynthesis,” says Nallani. The researchers are currently designing compartments that allow different components to mix just before reaching target cells. They are also introducing membrane proteins within these compartments that may facilitate the transport of products formed in one compartment to another.

Fu, Z., Ochsner, M. A., de Hoog, H.-P. M., Tomczak, N. & Nallani, M. Multicompartmentalized polymersomes for selective encapsulation of biomacromolecules. Chemical Communications 47, 2862–2864 (2011).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/
http://www.researchsea.com

Further reports about: Biomaterial biological process green light

More articles from Materials Sciences:

nachricht Gelatine instead of forearm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Computers create recipe for two new magnetic materials
18.04.2017 | Duke University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>