Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomaterials: Nestled in

13.10.2011
Multi-compartment globular structures assembled from polymer-based materials may soon serve as cell prototypes

The cell is a host of many complex reaction pathways. These pathways usually do not interfere with each other because they are contained within membrane-bound compartments, known as organelles. The lipid membrane is extremely selective—only allowing certain signalling molecules to permeate through—and plays an important role in biological processes, such as protein synthesis and the regulation of enzymatic reactions.

Madhavan Nallani from the A*STAR Institute of Materials Research and Engineering and co-workers¹ have now synthesized a new type of multi-compartment structure known as a polymersome, which mimics cellular compartmentalization through the use of self-assembling polymers.

Although many researchers have created artificial structures designed to imitate cells, their efforts have primarily been restricted to lipid and polymer-based structures with only one compartment. Nallani and his team designed a system consisting of two compartments self-assembled sequentially. “Most importantly, the membranes of different compartments are made from different materials,” Nallani says. As a consequence of this unique feature, the properties of the membranes can be tuned.

To make the polymersomes, the team opted for amphiphilic block copolymers—polymers composed of subunits with opposite affinity to water. Nallani explains that this difference in wettability is what drives the copolymers to self-organise into compartments. “One of the challenges that we encountered is the selection of materials to form such architectures,” he adds.

The researchers first synthesized single-compartment particles using one copolymer. They then entrapped each of these first structures in a second shell by adding a solution containing another type of copolymer. In the resulting multi-compartmentalized architectures, the inner particle consisted of a tightly packed, low-permeability membrane and was surrounded by a semi-permeable outer membrane that lets small molecules through.

Nallani and his team tested the selectivity of the compartment membranes for the encapsulation of biomolecules. As a proof of concept, they encased one kind of fluorescent protein that emits green light and another variety that displays red-light emission in the polymersomes. The inner part of the particles emitted green light while the outer compartment emitted red light (see image). The result suggests that the proteins were localized in two separate sections according to their type.

“Our system may add value in applications such as drug delivery and multi-enzyme biosynthesis,” says Nallani. The researchers are currently designing compartments that allow different components to mix just before reaching target cells. They are also introducing membrane proteins within these compartments that may facilitate the transport of products formed in one compartment to another.

Fu, Z., Ochsner, M. A., de Hoog, H.-P. M., Tomczak, N. & Nallani, M. Multicompartmentalized polymersomes for selective encapsulation of biomacromolecules. Chemical Communications 47, 2862–2864 (2011).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/
http://www.researchsea.com

Further reports about: Biomaterial biological process green light

More articles from Materials Sciences:

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

nachricht CWRU directly measures how perovskite solar films efficiently convert light to power
12.01.2017 | Case Western Reserve University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>