Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Biomaterial Gets “Sticky” with Stem Cells

12.12.2012
Just like the bones that hold up your body, your cells have their own scaffolding that holds them up. This scaffolding, known as the extracellular matrix, or ECM, not only props up cells but also provides attachment sites, or “sticky spots,” to which cells can bind, just as bones hold muscles in place.

A new study by researchers at the University of California, San Diego and the University of Sheffield in the United Kingdom found these sticky spots are distributed randomly throughout the extracellular matrix in the body, an important discovery with implications for researchers trying to figure out how to grow stem cells in the lab in ways that most closely mimic biology. That’s because the synthetic materials scientists currently use to mimic ECM in the lab don’t have randomly distributed sticky spots, but instead are more uniformly sticky.

The study was published by Adam Engler, a bioengineering professor at UC San Diego Jacobs School of Engineering, and Giuseppe Battaglia, a professor of synthetic biology at the University of Sheffield in the Journal of the American Chemical Society (JACS). The group then mimicked this random stickiness in a foam biomaterial made out of polymers.

Battaglia and Engler explained that the foam uses two polymers, one that is sticky and one that is not, that separate from each other in solution. “It’s like what happens when you make balsamic vinaigrette and all the vinegar is randomly distributed in tiny bubbles throughout the oil,” said Engler. “We shook these two polymers up sufficiently to form randomly distributed nano-scopic patches of the sticky material amid the non-sticky material.”

At the appropriate ratio of sticky and non-sticky polymer, they found that it is possible to tune the size and distribution of the foam’s adhesive regions: having less sticky polymer in the foam made its adhesive patches smaller and more dispersed, just as with natural ECM.

What was surprising to the team was when they allowed stem cells to adhere to the foams, they found that random stickiness versus uniform stickiness was required for stem cells to properly adhere. They also found that this is likely necessary for stem cell development into mature tissue cells. As Battaglia explains, “In this sense, stem cells are like Goldilocks: the scaffold should not be too sticky or not sticky, it must be just right to maximize adhesion, and later, to cause stem cells to mature into tissue cells.”

The data published by Battaglia, Engler, and lead authors Priyalakshmi Viswanathan from the University of Sheffield and UC San Diego Bioengineering Ph.D. student Somyot Chirasatitsin should help better inform researchers of how to make their biomaterials appropriately sticky for stem cells to ‘feel’ their way around.

This work was supported by grants from the U.S. National Institutes of Health (DP02OD006460), Human Frontiers Science Program, and the Engineering and Physical Sciences Research Council in the United Kingdom.

Catherine Hockmuth | Newswise
Further information:
http://www.ucsd.edu

Further reports about: Biomaterial Stem cell innovation methanol fuel cells stem cells

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>