Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Biomaterial Gets “Sticky” with Stem Cells

12.12.2012
Just like the bones that hold up your body, your cells have their own scaffolding that holds them up. This scaffolding, known as the extracellular matrix, or ECM, not only props up cells but also provides attachment sites, or “sticky spots,” to which cells can bind, just as bones hold muscles in place.

A new study by researchers at the University of California, San Diego and the University of Sheffield in the United Kingdom found these sticky spots are distributed randomly throughout the extracellular matrix in the body, an important discovery with implications for researchers trying to figure out how to grow stem cells in the lab in ways that most closely mimic biology. That’s because the synthetic materials scientists currently use to mimic ECM in the lab don’t have randomly distributed sticky spots, but instead are more uniformly sticky.

The study was published by Adam Engler, a bioengineering professor at UC San Diego Jacobs School of Engineering, and Giuseppe Battaglia, a professor of synthetic biology at the University of Sheffield in the Journal of the American Chemical Society (JACS). The group then mimicked this random stickiness in a foam biomaterial made out of polymers.

Battaglia and Engler explained that the foam uses two polymers, one that is sticky and one that is not, that separate from each other in solution. “It’s like what happens when you make balsamic vinaigrette and all the vinegar is randomly distributed in tiny bubbles throughout the oil,” said Engler. “We shook these two polymers up sufficiently to form randomly distributed nano-scopic patches of the sticky material amid the non-sticky material.”

At the appropriate ratio of sticky and non-sticky polymer, they found that it is possible to tune the size and distribution of the foam’s adhesive regions: having less sticky polymer in the foam made its adhesive patches smaller and more dispersed, just as with natural ECM.

What was surprising to the team was when they allowed stem cells to adhere to the foams, they found that random stickiness versus uniform stickiness was required for stem cells to properly adhere. They also found that this is likely necessary for stem cell development into mature tissue cells. As Battaglia explains, “In this sense, stem cells are like Goldilocks: the scaffold should not be too sticky or not sticky, it must be just right to maximize adhesion, and later, to cause stem cells to mature into tissue cells.”

The data published by Battaglia, Engler, and lead authors Priyalakshmi Viswanathan from the University of Sheffield and UC San Diego Bioengineering Ph.D. student Somyot Chirasatitsin should help better inform researchers of how to make their biomaterials appropriately sticky for stem cells to ‘feel’ their way around.

This work was supported by grants from the U.S. National Institutes of Health (DP02OD006460), Human Frontiers Science Program, and the Engineering and Physical Sciences Research Council in the United Kingdom.

Catherine Hockmuth | Newswise
Further information:
http://www.ucsd.edu

Further reports about: Biomaterial Stem cell innovation methanol fuel cells stem cells

More articles from Materials Sciences:

nachricht Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells
22.11.2017 | University of California - San Diego

nachricht Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>