Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioglass helping to mend bones

02.04.2013
UPV/EHU researchers have studied polymeric biomaterials of interest in medicine

Jose Ramon Sarasua and Aitor Larrañaga, researchers in the materials engineering department of the UPV/EHU-University of the Basque Country, have been studying new materials or implants that are of interest in medicine and in helping to mend bones, in particular.


These are implants made of biodegradable polymers, Department of Materials Science and Engineering, Faculty of Technical Engineering in Bilbao (UPV/EHU).

Credit: UPV/EHU

They have in fact measured the effect that the bioglass has on the thermal degradation of polymers currently used in medicine. The results have been published in the journal Polymer Degradation and Stability.

Bones are capable of regenerating themselves if they suffer slight damage. But if the damage is above a certain degree, bone lacks the capability of mending itself. When breaks are too big, bones need to be helped. Even today, metal nails or other components are often inserted to help these breaks to mend. So, once the bone has mended, a second operation has to be performed to extract these components. The aim of these new materials or implants is, among other things, to obviate the need for the second operation.

These materials or implants that are of interest in medicine have to meet a number of requirements before they can be used in therapeutic applications. Among other things, the materials have to be biocompatible, in other words, they must not damage the cells or the organism itself. At the same time, being biodegradable is also a very interesting property, so that the body will easily convert them into metabolic products that are not toxic. But other factors also have to be taken into consideration: mechanical robustness and the straightforward nature of the production process, for example.

Tailor-made materials
With all this in mind, the UPV/EHU researchers are synthesising and shaping tailor-made bioimplants. The main component, on the whole, tends to be a biodegradable polymer, in other words, one that will gradually disappear as the bone occupies its own place. As the polymer is too soft, bioglass was added to the polymer in this piece of work. Bioglass is a bioactive agent and helps the bone to regenerate; what is more, it gives the polymer tough mechanical properties. So the biodegradable polymer/bioglass composite system is stiffer and tougher than the polymer alone.

These composite systems can be manufactured by means of thermoplastic processes that use heat, and therefore it is important to study how these materials respond to heat. In this work, the biodegradable polymer/bioglass composite systems were found to have a lower thermal stability compared with the systems without bioglass. In fact, a reaction occurs between the silicon oxide ions of the bioglass and the carbonyl groups in the polymers' structure, and so the material degrades and adversely affects the properties of the end product, and what is more, when the implant is grafted into the body, it encourages the formation of bi-products that may be harmful for the cells. This would greatly restrict the application of these systems in medicine. That is why the UPV/EHU researchers are doing a lot of research to improve the thermal stability of these systems, and they have in fact published one of these pieces of work in the journal Polymer Degradation and Stability. In this case, they are proposing that a chemical transformation of the bioglass surface be made by means of plasma. So by creating protective layers for the bioglass particles, the reaction to the polymer is prevented and so the final product remains undamaged.
So "these composites that have a biodegradable polymer base are candidates with a bright future in mending broken bones or in regenerating bone defects," says Professor Sarasua. In fact, after the material has temporarily substituted the bone and encouraged it to regenerate, it gradually disappears as the bone returns to its proper place. So, "this obviates the need for the second operations required nowadays to remove nails and other parts that are inserted in order to somehow support the bones in major breaks above a critical size, with all the advantages that has from a whole range of perspectives," he added.

Article reference
A.Larrañaga, Jose-Ramon Sarasua. Effect of bioactive glass particles on the thermal degradation behaviour of medical polyesters. Polymer Degradation and Stability. 98:751-758 (2013).

About the authors

Jose Ramon Sarasua-Oiz and Aitor Larrañaga-Espartero lecture and do research at the Faculty of Technical Engineering in Bilbao (UPV/EHU). They are also the director and member, respectively, of the ZIBIO (Science & Engineering of Polymeric Biomaterials) research team, which is part of the Basque Excellence Research Center for Macromolecular Design & Engineering (Polymat).

Aitziber Lasa | EurekAlert!
Further information:
http://www.elhuyar.com

Further reports about: Bioglass Polymere degradation thermal stability

More articles from Materials Sciences:

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>