Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioglass helping to mend bones

02.04.2013
UPV/EHU researchers have studied polymeric biomaterials of interest in medicine

Jose Ramon Sarasua and Aitor Larrañaga, researchers in the materials engineering department of the UPV/EHU-University of the Basque Country, have been studying new materials or implants that are of interest in medicine and in helping to mend bones, in particular.


These are implants made of biodegradable polymers, Department of Materials Science and Engineering, Faculty of Technical Engineering in Bilbao (UPV/EHU).

Credit: UPV/EHU

They have in fact measured the effect that the bioglass has on the thermal degradation of polymers currently used in medicine. The results have been published in the journal Polymer Degradation and Stability.

Bones are capable of regenerating themselves if they suffer slight damage. But if the damage is above a certain degree, bone lacks the capability of mending itself. When breaks are too big, bones need to be helped. Even today, metal nails or other components are often inserted to help these breaks to mend. So, once the bone has mended, a second operation has to be performed to extract these components. The aim of these new materials or implants is, among other things, to obviate the need for the second operation.

These materials or implants that are of interest in medicine have to meet a number of requirements before they can be used in therapeutic applications. Among other things, the materials have to be biocompatible, in other words, they must not damage the cells or the organism itself. At the same time, being biodegradable is also a very interesting property, so that the body will easily convert them into metabolic products that are not toxic. But other factors also have to be taken into consideration: mechanical robustness and the straightforward nature of the production process, for example.

Tailor-made materials
With all this in mind, the UPV/EHU researchers are synthesising and shaping tailor-made bioimplants. The main component, on the whole, tends to be a biodegradable polymer, in other words, one that will gradually disappear as the bone occupies its own place. As the polymer is too soft, bioglass was added to the polymer in this piece of work. Bioglass is a bioactive agent and helps the bone to regenerate; what is more, it gives the polymer tough mechanical properties. So the biodegradable polymer/bioglass composite system is stiffer and tougher than the polymer alone.

These composite systems can be manufactured by means of thermoplastic processes that use heat, and therefore it is important to study how these materials respond to heat. In this work, the biodegradable polymer/bioglass composite systems were found to have a lower thermal stability compared with the systems without bioglass. In fact, a reaction occurs between the silicon oxide ions of the bioglass and the carbonyl groups in the polymers' structure, and so the material degrades and adversely affects the properties of the end product, and what is more, when the implant is grafted into the body, it encourages the formation of bi-products that may be harmful for the cells. This would greatly restrict the application of these systems in medicine. That is why the UPV/EHU researchers are doing a lot of research to improve the thermal stability of these systems, and they have in fact published one of these pieces of work in the journal Polymer Degradation and Stability. In this case, they are proposing that a chemical transformation of the bioglass surface be made by means of plasma. So by creating protective layers for the bioglass particles, the reaction to the polymer is prevented and so the final product remains undamaged.
So "these composites that have a biodegradable polymer base are candidates with a bright future in mending broken bones or in regenerating bone defects," says Professor Sarasua. In fact, after the material has temporarily substituted the bone and encouraged it to regenerate, it gradually disappears as the bone returns to its proper place. So, "this obviates the need for the second operations required nowadays to remove nails and other parts that are inserted in order to somehow support the bones in major breaks above a critical size, with all the advantages that has from a whole range of perspectives," he added.

Article reference
A.Larrañaga, Jose-Ramon Sarasua. Effect of bioactive glass particles on the thermal degradation behaviour of medical polyesters. Polymer Degradation and Stability. 98:751-758 (2013).

About the authors

Jose Ramon Sarasua-Oiz and Aitor Larrañaga-Espartero lecture and do research at the Faculty of Technical Engineering in Bilbao (UPV/EHU). They are also the director and member, respectively, of the ZIBIO (Science & Engineering of Polymeric Biomaterials) research team, which is part of the Basque Excellence Research Center for Macromolecular Design & Engineering (Polymat).

Aitziber Lasa | EurekAlert!
Further information:
http://www.elhuyar.com

Further reports about: Bioglass Polymere degradation thermal stability

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>