Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Berkeley scientists pioneer nanoscale nuclear materials testing capability

27.06.2011
Nuclear power is a major component of our nation's long-term clean-energy future, but the technology has come under increased scrutiny in the wake of Japan's recent Fukushima disaster. Indeed, many nations have called for checks and "stress tests" to ensure nuclear plants are operating safely.

In the United States, about 20 percent of our electricity and almost 70 percent of the electricity from emission-free sources, including renewable technologies and hydroelectric power plants, is supplied by nuclear power. Along with power generation, many of the world's nuclear facilities are used for research, materials testing, or the production of radioisotopes for the medical industry. The service life of structural and functional material components in these facilities is therefore crucial for ensuring reliable operation and safety.


Scientists at Lawrence Berkeley National Laboratory and the University of California at Berkeley conducted compression tests of copper specimens irradiated with high-energy protons, designed to model how damage from radiation affects the mechanical properties of copper. By using a specialized in situ mechanical testing device in a transmission electron microscope at the National Center for Electron Microscopy, the team could examine -- with nanoscale resolution -- the localized nature of this deformation. (Scales in nanometers, millionths of a meter.) Credit: Minor et al, Lawrence Berkeley National Laboratory

Now scientists at Berkeley Lab, the University of California at Berkeley, and Los Alamos National Laboratory have devised a nanoscale testing technique for irradiated materials that provides macroscale materials-strength properties. This technique could help accelerate the development of new materials for nuclear applications and reduce the amount of material required for testing of facilities already in service.

"Nanoscale mechanical tests always give you higher strengths than the macroscale, bulk values for a material. This is a problem if you actually want use a nanoscale test to tell you something about the bulk-material properties," said Andrew Minor, a faculty scientist in the National Center for Electron Microscopy (NCEM) and an associate professor in the materials science and engineering department at UC Berkeley. "We have shown you can actually get real properties from irradiated specimens as small as 400 nanometers in diameter, which really opens up the field of nuclear materials to take advantage of nanoscale testing."

In this study, Minor and his colleagues conducted compression tests of copper specimens irradiated with high-energy protons, designed to model how damage from radiation affects the mechanical properties of copper. By using a specialized in situ mechanical testing device in a transmission electron microscope at NCEM, the team could examine — with nanoscale resolution — the nature of the deformation and how it was localized to just a few atomic planes.

Three-dimensional defects within the copper created by radiation can block the motion of one-dimensional defects in the crystal structure, called dislocations. This interaction causes irradiated materials to become brittle, and alters the amount of force a material can withstand before it eventually breaks. By translating nanoscale strength values into bulk properties, this technique could help reactor designers find suitable materials for engineering components in nuclear plants.

"This small-scale testing technique could help extend the lifetime of a nuclear reactor," said co-author Peter Hosemann, an assistant professor in the nuclear engineering department at UC Berkeley. "By using a smaller specimen, we limit any safety issues related to the handling of the test material and could potentially measure the exact properties of a material already being used in a 40-year-old nuclear facility to make sure this structure lasts well into the future."

Minor adds, "Understanding how materials fail is a fundamental mechanistic question. This proof of principle study gives us a model system from which we can now start to explore real, practical materials applicable to nuclear energy. By understanding the role of defects on the mechanical properties of nuclear reactor materials, we can design materials that are more resistant to radiation damage, leading to more advanced and safer nuclear technologies."

A paper reporting this research titled, "In situ nanocompression testing of irradiated copper," appears in Nature Materials and is available to subscribers online. Co-authoring the paper with Minor and Hosemann were Daniel Kiener and Stuart Maloy. Portions of this work at the National Center for Electron Microscopy were supported by DOE's Office of Science.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

Aditi Risbud | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Materials Sciences:

nachricht Triboelectric nanogenerators boost mass spectrometry performance
28.02.2017 | Georgia Institute of Technology

nachricht Nano 'sandwich' offers unique properties
28.02.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>