Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Bendy' LEDs

24.09.2014

Korean research team has grown gallium nitride micro-rods on graphene substrates to create transferrable light-emitting diodes -- enabling bendable optoelectronics devices.

"Bendy" light-emitting diode (LED) displays and solar cells crafted with inorganic compound semiconductor micro-rods are moving one step closer to reality, thanks to graphene and the work of a team of researchers in Korea.


This is a rendering of the micro-rod growth process.

Credit: Seoul National University

Currently, most flexible electronics and optoelectronics devices are fabricated using organic materials. But inorganic compound semiconductors such as gallium nitride (GaN) can provide plenty of advantages over organic materials for use in these devices -- including superior optical, electrical and mechanical properties.

One major obstacle that has so far prevented the use of inorganic compound semiconductors in these types of applications was the difficulty of growing them on flexible substrates.

In the journal APL Materials, from AIP Publishing, a team of Seoul National University (SNU) researchers led by Professor Gyu-Chul Yi describes their work growing GaN micro-rods on graphene to create transferrable LEDs and enable the fabrication of bendable and stretchable devices.

"GaN microstructures and nanostructures are garnering attention within the research community as light-emitting devices because of their variable-color light emission and high-density integration properties," explained Yi. "When combined with graphene substrates, these microstructures also show excellent tolerance for mechanical deformation."

Why choose graphene for substrates? Ultrathin graphene films consist of weakly bonded layers of hexagonally arranged carbon atoms held together by strong covalent bonds. This makes graphene an ideal substrate "because it provides the desired flexibility with excellent mechanical strength -- and it's also chemically and physically stable at temperatures in excess of 1,000°C," said Yi.

It's important to note that for the GaN micro-rod growth, the very stable and inactive surface of graphene offers a small number of nucleation sites for GaN growth, which would enhance three-dimensional island growth of GaN micro-rods on graphene.

To create the actual GaN microstructure LEDs on the graphene substrates, the team uses a catalyst-free metal-organic chemical vapor deposition (MOCVD) process they developed back in 2002.

"Among the technique's key criteria, it's necessary to maintain high crystallinity, control over doping, formation of heterostructures and quantum structures, and vertically aligned growth onto underlying substrates," Yi says.

When the team put the bendability and reliability of GaN micro-rod LEDs fabricated on graphene to the test, they found that "the resulting flexible LEDs showed intense electroluminescence (EL) and were reliable -- there was no significant degradation in optical performance after 1,000 bending cycles," noted Kunook Chung, the article's lead author and a graduate student in SNU's Physics Department.

This represents a tremendous breakthrough for next-generation electronics and optoelectronics devices -- enabling the use of large-scale and low-cost manufacturing processes.

"By taking advantage of larger-sized graphene films, hybrid heterostructures can be used to fabricate various electronics and optoelectronics devices such as flexible and wearable LED displays for commercial use," said Yi.

###

The article, "Growth and characterizations of GaN micro-rods on graphene films for flexible light-emitting diodes," is authored by Kunook Chung, Hyeonjun Beak, Youngbin Tchoe, Hongseok Oh, Hyobin Yoo, Miyoung Kim, and Gyu-Chul Yi. It will appear in the journal APL Materials on September 23, 2014. After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/aplmater/2/9/10.1063/1.4894780

ABOUT THE JOURNAL

APL Materials is a new open access journal featuring original research on significant topical issues within the field of materials science. See: http://aplmaterials.aip.org

Jason Socrates Bardi | Eurek Alert!

More articles from Materials Sciences:

nachricht Osaka university researchers make the slipperiest surfaces adhesive
18.10.2017 | Osaka University

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>