Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New beamline at MAX II opens for research

24.05.2011
Using the new beamline, 911-4, at MAX-lab in Lund, Sweden, researchers can study a wide range of different types of material with a resolution of a few nanometres. This could be useful for both basic research and industry in general. The facility is the result of a Danish–Swedish collaboration. Now it is opening for research.

The new facility is a SAXS beamline, which means that it is used to examine the components of materials and their morphology with the help of an X-ray scattering method. This provides a rough picture of the structure of the sample and makes it possible to see the general shape and size of the particles or how close they are to one another.

The SAXS method can be used for any kind of sample (solids, liquids or gases). This makes it attractive for various different fields and classes of material – SAXS is successfully used in the study of soft matter, mainly synthetic and natural polymers and biomacromolecules in solution, and is also relevant in the analysis of metals, alloys, glasses and porous materials in general. Basic and applied science fields can benefit from the use of the new facility.

SAXS beamlines are present in several synchrotron radiation facilities, and at MAX-lab the method has previously been used with great success on the I711 beamline. After five years of preparation, the new beamline is now open to users. The first experiments were done in February and the first measurements with external users were made in April.

One feature which makes MAX-lab’s new SAXS beamline special is that it is unusually easy to use. The X-rays are also five–six times stronger than at the previous facility. The SAXS method is a very flexible technique that has become increasingly popular as new user groups have realised its potential. This was one of the reasons for the decision to build the new beamline.

The investment in the SAXS beamline 911-4 at the MAX II ring is a result of ongoing Danish–Swedish collaboration. Thanks to funding from sources including DANSCATT and expertise and staff from the University of Copenhagen and MAX-lab, the project has become a reality.

Facts:
• Research is conducted at synchrotron radiation facilities all over the world. In Sweden there is one such laboratory: the national laboratory MAX-lab in Lund.
• SAXS stands for Small-Angle X-ray Scattering.
• Construction of a new synchrotron radiation facility in Sweden – MAX IV – has begun.
• There are also plans for a SAXS beamline at MAX IV.
• Research is conducted at the beamlines’ experiment stations. Depending on how the beamline and the experiment station are constructed, different types of experiments can be carried out.

MAX-lab is a synchrotron radiation facility which forms part of the MAX IV Laboratory. The MAX IV Laboratory is a national research laboratory comprising MAX-lab and the MAX IV project. It is run by Lund University and the Swedish Research Council and is located in Lund. www.maxlab.lu.se

For more information, please contact Dr Tomás S. Plivelic, the MAX IV Laboratory. Tel: +46 46 222 44 32. Email: tomas.plivelic@maxlab.lu.se

Megan Grindlay | idw
Further information:
http://www.maxlab.lu.se/media_press/research/pm_9114.html
http://www.lu.se

More articles from Materials Sciences:

nachricht Nagoya University researchers break down plastic waste
29.05.2017 | Nagoya University

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>