Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New beamline at MAX II opens for research

24.05.2011
Using the new beamline, 911-4, at MAX-lab in Lund, Sweden, researchers can study a wide range of different types of material with a resolution of a few nanometres. This could be useful for both basic research and industry in general. The facility is the result of a Danish–Swedish collaboration. Now it is opening for research.

The new facility is a SAXS beamline, which means that it is used to examine the components of materials and their morphology with the help of an X-ray scattering method. This provides a rough picture of the structure of the sample and makes it possible to see the general shape and size of the particles or how close they are to one another.

The SAXS method can be used for any kind of sample (solids, liquids or gases). This makes it attractive for various different fields and classes of material – SAXS is successfully used in the study of soft matter, mainly synthetic and natural polymers and biomacromolecules in solution, and is also relevant in the analysis of metals, alloys, glasses and porous materials in general. Basic and applied science fields can benefit from the use of the new facility.

SAXS beamlines are present in several synchrotron radiation facilities, and at MAX-lab the method has previously been used with great success on the I711 beamline. After five years of preparation, the new beamline is now open to users. The first experiments were done in February and the first measurements with external users were made in April.

One feature which makes MAX-lab’s new SAXS beamline special is that it is unusually easy to use. The X-rays are also five–six times stronger than at the previous facility. The SAXS method is a very flexible technique that has become increasingly popular as new user groups have realised its potential. This was one of the reasons for the decision to build the new beamline.

The investment in the SAXS beamline 911-4 at the MAX II ring is a result of ongoing Danish–Swedish collaboration. Thanks to funding from sources including DANSCATT and expertise and staff from the University of Copenhagen and MAX-lab, the project has become a reality.

Facts:
• Research is conducted at synchrotron radiation facilities all over the world. In Sweden there is one such laboratory: the national laboratory MAX-lab in Lund.
• SAXS stands for Small-Angle X-ray Scattering.
• Construction of a new synchrotron radiation facility in Sweden – MAX IV – has begun.
• There are also plans for a SAXS beamline at MAX IV.
• Research is conducted at the beamlines’ experiment stations. Depending on how the beamline and the experiment station are constructed, different types of experiments can be carried out.

MAX-lab is a synchrotron radiation facility which forms part of the MAX IV Laboratory. The MAX IV Laboratory is a national research laboratory comprising MAX-lab and the MAX IV project. It is run by Lund University and the Swedish Research Council and is located in Lund. www.maxlab.lu.se

For more information, please contact Dr Tomás S. Plivelic, the MAX IV Laboratory. Tel: +46 46 222 44 32. Email: tomas.plivelic@maxlab.lu.se

Megan Grindlay | idw
Further information:
http://www.maxlab.lu.se/media_press/research/pm_9114.html
http://www.lu.se

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>