Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New beamline at MAX II opens for research

24.05.2011
Using the new beamline, 911-4, at MAX-lab in Lund, Sweden, researchers can study a wide range of different types of material with a resolution of a few nanometres. This could be useful for both basic research and industry in general. The facility is the result of a Danish–Swedish collaboration. Now it is opening for research.

The new facility is a SAXS beamline, which means that it is used to examine the components of materials and their morphology with the help of an X-ray scattering method. This provides a rough picture of the structure of the sample and makes it possible to see the general shape and size of the particles or how close they are to one another.

The SAXS method can be used for any kind of sample (solids, liquids or gases). This makes it attractive for various different fields and classes of material – SAXS is successfully used in the study of soft matter, mainly synthetic and natural polymers and biomacromolecules in solution, and is also relevant in the analysis of metals, alloys, glasses and porous materials in general. Basic and applied science fields can benefit from the use of the new facility.

SAXS beamlines are present in several synchrotron radiation facilities, and at MAX-lab the method has previously been used with great success on the I711 beamline. After five years of preparation, the new beamline is now open to users. The first experiments were done in February and the first measurements with external users were made in April.

One feature which makes MAX-lab’s new SAXS beamline special is that it is unusually easy to use. The X-rays are also five–six times stronger than at the previous facility. The SAXS method is a very flexible technique that has become increasingly popular as new user groups have realised its potential. This was one of the reasons for the decision to build the new beamline.

The investment in the SAXS beamline 911-4 at the MAX II ring is a result of ongoing Danish–Swedish collaboration. Thanks to funding from sources including DANSCATT and expertise and staff from the University of Copenhagen and MAX-lab, the project has become a reality.

Facts:
• Research is conducted at synchrotron radiation facilities all over the world. In Sweden there is one such laboratory: the national laboratory MAX-lab in Lund.
• SAXS stands for Small-Angle X-ray Scattering.
• Construction of a new synchrotron radiation facility in Sweden – MAX IV – has begun.
• There are also plans for a SAXS beamline at MAX IV.
• Research is conducted at the beamlines’ experiment stations. Depending on how the beamline and the experiment station are constructed, different types of experiments can be carried out.

MAX-lab is a synchrotron radiation facility which forms part of the MAX IV Laboratory. The MAX IV Laboratory is a national research laboratory comprising MAX-lab and the MAX IV project. It is run by Lund University and the Swedish Research Council and is located in Lund. www.maxlab.lu.se

For more information, please contact Dr Tomás S. Plivelic, the MAX IV Laboratory. Tel: +46 46 222 44 32. Email: tomas.plivelic@maxlab.lu.se

Megan Grindlay | idw
Further information:
http://www.maxlab.lu.se/media_press/research/pm_9114.html
http://www.lu.se

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>