Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autonomous convergence and divergence of the self-powered soft liquid metal vehicles

28.04.2015

The autonomous locomotion for a macroscopic machine remains an intriguing issue for the researchers to explore.

Recently, Professor LIU Jing and his group from Tsinghua University demonstrated that as a versatile material, the liquid metal could be self-actuated when fueled with aluminum (Al) flake, and the motion thus enabled would persist for more than an hour at a quite high velocity.


In this video, a thermostat water bath is employed to accelerate the motion. Several smaller droplet vehicles are deposited in the channel gently. The larger vehicle catches up with the smaller vehicle and swallows it seamlessly, finally.

©Science China Press

Based on the previous study, the present work proposed to realize a much larger liquid metal machine, which could autonomously move and accelerate with the increase of temperature. More surprisingly, when dividing a large running liquid metal vehicle into several smaller ones, each of them still maintains its traveling state along the original track.

If several dispersive vehicles moved close to each other, they could coalesce seamlessly, and then still kept moving forward. This finding has been published on Science Bulletin, 2015.

Conventionally, it has been a challenge for a machine to achieve self-assembly without manual intervention. Generally, the self-assembly indicates a reversible process that pre-designed discrete modules could be assembled together.

When assembling the machine, each module is bound to the other. And if the discrete modules are needed to work individually, each of them should be equipped with separate power sources. These processes often results in a complex design and fabrication.

Inspired by the liquid metal enabled autonomous motion, which tactfully obviated the need of external energy, the present study demonstrated that through elevating the temperature, a much larger self-propelled machine could be achieved. More importantly, during the moving process, if dividing a large machine into several smaller separately running vehicles, each of them still resumes its traveling state along the original track and chases each other.

If the volumes of such dispersive vehicles were close to each other, and they were all squeezed in the channel, the vehicles would move synchronously with oscillation. Otherwise, such self-motion would become desynchronized with interval between the inequable vehicles decreased gradually.

If their volumes were significantly different, and the smaller vehicles were not squeezed in the channel, the faster vehicle would overtake the slower ones, until finally coalesced seamlessly. The assembled vehicle could deform itself along with change of its velocity.

This finding may shed light on future researches on smart material, fluid mechanics and soft matter to self-fueled machine. It would also offer opportunities for constructing self-reconfigurable soft robots.

See the article: ZHANG Jie, YAO Youyou, LIU Jing, Autonomous convergence and divergence of the self-powered soft liquid metal vehicles, Science Bulletin, 2015.

http://link.springer.com/article/10.1007%2Fs11434-015-0786-z

LIU Jing | EurekAlert!

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>