Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-Assembling Structures Open Door to New Class of Materials

14.01.2011
Researchers at the University of Illinois and Northwestern University have demonstrated bio-inspired structures that self-assemble from simple building blocks: spheres.

The helical “supermolecules” are made of tiny colloid balls instead of atoms or molecules. Similar methods could be used to make new materials with the functionality of complex colloidal molecules. The team will publish its findings in the Jan. 14 issue of the journal Science.

“We can now make a whole new class of smart materials, which opens the door to new functionality that we couldn’t imagine before,” said Steve Granick, Founder Professor of Engineering at the University of Illinois and a professor of materials science and engineering, chemistry, and physics.

Granick’s team developed tiny latex spheres, dubbed “Janus spheres,” which attract each other in water on one side, but repel each other on the other side. The dual nature is what gives the spheres their ability to form unusual structures, in a similar way to atoms and molecules.

In pure water, the particles disperse completely because their charged sides repel one another. However, when salt is added to the solution, the salt ions soften the repulsion so the spheres can approach sufficiently closely for their hydrophobic ends to attract.

The attraction between those ends draws the spheres together into clusters.
At low salt concentrations, small clusters of only a few particles form. At higher levels, larger clusters form, eventually self-assembling into chains with an intricate helical structure.

“Just like atoms growing into molecules, these particles can grow into supracolloids,” Granick said. “Such pathways would be very conventional if we were talking about atoms and molecules reacting with each other chemically, but people haven’t realized that particles can behave in this way also.”

The team designed spheres with just the right amount of attraction between their hydrophobic halves so that they would stick to one another but still be dynamic enough to allow for motion, rearrangement, and cluster growth.

“The amount of stickiness really does matter a lot. You can end up with something that’s disordered, just small clusters, or if the spheres are too sticky, you end up with a globular mess instead of these beautiful structures,” said graduate student Jonathan Whitmer, a co-author of the paper.

One of the advantages of the team’s supermolecules is that they are large enough to observe in real time using a microscope. The researchers were able to watch the Janus spheres come together and the clusters grow – whether one sphere at a time or by merging with other small clusters – and rearrange into different structural configurations the team calls isomers.

“We design these smart materials to fall into useful shapes that nature wouldn’t choose,” Granick said.

Surprisingly, theoretical calculations and computer simulations by Erik Luijten, Northwestern University professor of materials science and engineering and of engineering sciences and applied mathematics, and Whitmer, a student in his group, showed that the most common helical structures are not the most energetically favorable. Rather, the spheres come together in a way that is the most kinetically favorable – that is, the first good fit that they encounter.

Next, the researchers hope to continue to explore the colloid properties with a view toward engineering more unnatural structures. Janus particles of differing sizes or shapes could open the door to building other supermolecules and to greater control over their formation.

“These particular particles have preferred structures, but now that we realize the general mechanism, we can apply it to other systems – smaller particles, different interactions – and try to engineer clusters that switch in shape,” Granick said.

The team also included University of Illinois graduate students Qian Chen and Shan Jiang and research scientist Sung Chul Bae. The U.S. Department of Energy and the National Science Foundation supported this work.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>