Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial muscle as shock absorber

01.06.2012
Engineers are working on intelligent materials that can diminish vibrations and extract power from the environment. These electro-active elastomers could dampen annoying vibrations in a car, for example, or supply wireless power to sensors in otherwise inaccessible places.

It is not very fun to ride a bicycle on a street plastered with cobblestones. At least the bike has a saddle seat filled with silicone. That lessens the shocks and bumps, and counteracts some of the annoying vibrations.


This image shows the lattice-shaped electrode in the foreground, and the elastomer in the background. © Ursula Raapke

In a professional‘s eyes, the material in the saddle is an “elastomer” – a material that is yielding and malleable, like a rubber band. Engineers at the Fraunhofer Institute for Structural Durability and System Reliability LBF in Darmstadt are now working on the next generation: They are designing components made of elastomers that actively respond to unwanted vibrations, and dampen them more effectively than ever before.

Elastomers have been used in engineering for decades, such as shock absorbers in mechanical engineering or in the bearings for vehicle engines. Until now, they have had a purely passive effect on vibrations or impact collisions. It would be more effective if the elastomers were to respond proactively and counteract vibrations.

In the same way a tennis player slows down the ball on a drop shot by pulling back on her racket, an active elastomer draws out the energy from the vibration in a targeted manner by swinging in precise push-pull mode. Theoretically, this would make the vibration dissipate completely.

Elastomers vibrate under alternating current

There are already materials that are good for this purpose. “They are called ‘electroactive elastomers’,” explains LBF scientist William Kaal. “They are elastic substances that change their form when exposed to an electrical field.” The trick: apply an alternating current, and the material starts to vibrate. If there are smart electronics controlling the elastomers, making them vibrate precisely in push-pull mode, then unwanted vibrations in equipment or an engine will dissipate for the most part. To demonstrate that the principle works, the Darmstadt-based researchers created a model. Smaller than a pack of cigarettes, it is comprised of 40 thin elastomer electrode layers.

The experts call it a “stack actuator.” “The challenge was the design of the electrodes with which we apply the electric field to the elastomer layers,” as Kaal‘s colleague Jan Hansmann clarifies. Usually, electrodes are made out of metal. However, metals are relatively rigid, which impedes the deformation of the elastomer. Fraunhofer experts deliver an elegant solution to the problem: “We put microscopic-sized holes in the electrodes,” says Hansmann.

“If an electric voltage deforms the elastomer, then the elastomer can disperse into these holes.” The result is an actuator that can rise or fall a few tenths of a centimeter upon command – several times a second, in fact. To demonstrate these capabilities, William Kaal attaches a small mechanical oscillator to the device. When he turns it on, the oscillator begins shaking powerfully – the actuator has hit its resonance frequency perfectly. On the other hand, the instrument can actively absorb vibrations: If the oscillator is tapped by hand, it quickly settles down when the actuator vibrates in push-pull mode.

The LBF engineers believe one potential application for their stack actuator can be found in vehicle construction. “An engine‘s vibrations can be really disruptive,” says William Kaal. “The vibrations are channeled through the chassis into the car‘s interior, where the passengers start to feel them.” Of course, engines are installed meticulously, and yet: “Active elastomers may help further reduce vibrations in the car,” Kaal asserts.

When vibrations turn into power

The function of the stack actuator can also be reversed: rather than produce vibrations, the device can also absorb vibrations from its surroundings to produce energy. The principle works, and researchers have proven it. As they placed an electromagnetic oscillator on their stack actuator, it converted the vibrations into power. “That would be of interest, for example, if you wanted to monitor inaccessible sites where there are vibrations but no power connections,” Jan Hansmann believes – as he cites an example: the temperature and vibration sensors that monitor bridges for their condition.

The stack actuator technology has been largely perfected: “The manufacturing process can be readily automated. That is important for industrial mass production,” thinks Kaal. Nevertheless, endurance tests still have to show what the long-term viability of the intelligent actuators is like. Ultimately, they must be able to withstand harsh environments of the kind found in the engine compartment of a car.

William Kaal | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/june/artificial-muscle-as-shock-absorber.html

More articles from Materials Sciences:

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

The RWI/ISL-Container Throughput Index started off well in 2018

22.02.2018 | Business and Finance

FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation

22.02.2018 | Health and Medicine

Histology in 3D: new staining method enables Nano-CT imaging of tissue samples

22.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>