Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial gemstones for telecommunication

15.12.2014

Who is not impressed by the play of colors that opals and other gemstones create?

Inspired by the interaction of opals with light, Dr. Alexander Kühne investigates and develops artificial opals for future applications in the fields of telecommunication, photonics and biomedicine. His efforts find appreciation: The Federal Ministry of Education and Research (BMBF) now decided to fund Alexander Kühne’s junior research group at DWI – Leibniz Institute for Interactive Materials. The total funding amount is one million euros and covers a period of four years.


Printed opals and their particle structure as visualized by electron microscopy

Figure: A. Kühne / DWI

Opals – both natural and artificial ones – consist of small particles that can alter light waves. For example, they reflect light of a certain wavelength, whereas light of a different wavelength can pass. In his group, Alexander Kühne prepares such particles in a sophisticated chemical procedure. Subsequently, the group members use a spinning method to prepare light-conducting fibers, in which the particles assemble in the core.

Alternatively, they can use ink jet printing to position the particles on a surface. Both techniques are based on the property of the particles to self-assemble into regular crystalline structures just like in natural opals. “With our particle system, we combine three distinct ways of interaction with light,” 33-year-old Kühne explains. “Light absorption like in dyes and pigments, emission using the fluorescence effect, and reflection occurring from the regular structure of the assembled particles.”

“In the future, our materials may play a significant role as manipulators in light-guiding data cables. They might contribute to faster, more efficient ways of data transfer. In addition, they could be used as printable forgery protection labels, on packaging of drugs and vaccines.“ However, current challenges for Kühne and his team are still a few steps away from application: “We are trying to create high numbers of particles with uniform size and morphology. Besides, we are working on combining several fluorescent colors within one system.“

Alexander Kühne studied chemistry in Cologne and Glasgow and did his PhD in the group of Richard Pethrick at the University of Strathclyde in Glasgow. After postdoc positions in the labs of Klaus Meerholz (Cologne) and David Weitz (Harvard), he moved back to Germany and joined DWI in 2011. His current research is based on his experience with nano-structured polymer films for organic lasers.

Dr. Janine Hillmer | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells
22.11.2017 | University of California - San Diego

nachricht Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Desert ants cannot be fooled

23.11.2017 | Life Sciences

By saving cost and energy, the lighting revolution may increase light pollution

23.11.2017 | Earth Sciences

Retreating permafrost coasts threaten the fragile Arctic environment

23.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>