Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Artificial gemstones for telecommunication


Who is not impressed by the play of colors that opals and other gemstones create?

Inspired by the interaction of opals with light, Dr. Alexander Kühne investigates and develops artificial opals for future applications in the fields of telecommunication, photonics and biomedicine. His efforts find appreciation: The Federal Ministry of Education and Research (BMBF) now decided to fund Alexander Kühne’s junior research group at DWI – Leibniz Institute for Interactive Materials. The total funding amount is one million euros and covers a period of four years.

Printed opals and their particle structure as visualized by electron microscopy

Figure: A. Kühne / DWI

Opals – both natural and artificial ones – consist of small particles that can alter light waves. For example, they reflect light of a certain wavelength, whereas light of a different wavelength can pass. In his group, Alexander Kühne prepares such particles in a sophisticated chemical procedure. Subsequently, the group members use a spinning method to prepare light-conducting fibers, in which the particles assemble in the core.

Alternatively, they can use ink jet printing to position the particles on a surface. Both techniques are based on the property of the particles to self-assemble into regular crystalline structures just like in natural opals. “With our particle system, we combine three distinct ways of interaction with light,” 33-year-old Kühne explains. “Light absorption like in dyes and pigments, emission using the fluorescence effect, and reflection occurring from the regular structure of the assembled particles.”

“In the future, our materials may play a significant role as manipulators in light-guiding data cables. They might contribute to faster, more efficient ways of data transfer. In addition, they could be used as printable forgery protection labels, on packaging of drugs and vaccines.“ However, current challenges for Kühne and his team are still a few steps away from application: “We are trying to create high numbers of particles with uniform size and morphology. Besides, we are working on combining several fluorescent colors within one system.“

Alexander Kühne studied chemistry in Cologne and Glasgow and did his PhD in the group of Richard Pethrick at the University of Strathclyde in Glasgow. After postdoc positions in the labs of Klaus Meerholz (Cologne) and David Weitz (Harvard), he moved back to Germany and joined DWI in 2011. His current research is based on his experience with nano-structured polymer films for organic lasers.

Dr. Janine Hillmer | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

nachricht Scientists develop a semiconductor nanocomposite material that moves in response to light
18.10.2016 | Worcester Polytechnic Institute

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>