Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial gemstones for telecommunication

15.12.2014

Who is not impressed by the play of colors that opals and other gemstones create?

Inspired by the interaction of opals with light, Dr. Alexander Kühne investigates and develops artificial opals for future applications in the fields of telecommunication, photonics and biomedicine. His efforts find appreciation: The Federal Ministry of Education and Research (BMBF) now decided to fund Alexander Kühne’s junior research group at DWI – Leibniz Institute for Interactive Materials. The total funding amount is one million euros and covers a period of four years.


Printed opals and their particle structure as visualized by electron microscopy

Figure: A. Kühne / DWI

Opals – both natural and artificial ones – consist of small particles that can alter light waves. For example, they reflect light of a certain wavelength, whereas light of a different wavelength can pass. In his group, Alexander Kühne prepares such particles in a sophisticated chemical procedure. Subsequently, the group members use a spinning method to prepare light-conducting fibers, in which the particles assemble in the core.

Alternatively, they can use ink jet printing to position the particles on a surface. Both techniques are based on the property of the particles to self-assemble into regular crystalline structures just like in natural opals. “With our particle system, we combine three distinct ways of interaction with light,” 33-year-old Kühne explains. “Light absorption like in dyes and pigments, emission using the fluorescence effect, and reflection occurring from the regular structure of the assembled particles.”

“In the future, our materials may play a significant role as manipulators in light-guiding data cables. They might contribute to faster, more efficient ways of data transfer. In addition, they could be used as printable forgery protection labels, on packaging of drugs and vaccines.“ However, current challenges for Kühne and his team are still a few steps away from application: “We are trying to create high numbers of particles with uniform size and morphology. Besides, we are working on combining several fluorescent colors within one system.“

Alexander Kühne studied chemistry in Cologne and Glasgow and did his PhD in the group of Richard Pethrick at the University of Strathclyde in Glasgow. After postdoc positions in the labs of Klaus Meerholz (Cologne) and David Weitz (Harvard), he moved back to Germany and joined DWI in 2011. His current research is based on his experience with nano-structured polymer films for organic lasers.

Dr. Janine Hillmer | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging
24.04.2017 | Pohang University of Science & Technology (POSTECH)

nachricht Wonder material? Novel nanotube structure strengthens thin films for flexible electronics
24.04.2017 | University of Illinois College of Engineering

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>