Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New analytical methodology can guide electrode optimization

10.07.2013
Using a new analytical methodology--a coupled micro-computed X-ray tomography (MicroCT) and microfluidic-based electrochemical analysis--researchers at the University of Illinois at Urbana-Champaign are gaining new insights into electrode structure-performance relationships for energy conversion and storage devices.

A 3-D rendering of a gas diffusion electrode, used in fuel cells and CO2 electrolyzers, where a thin, uniform, and crack-free catalyst layer is crucial to efficient operation.


A 3-D rendering of a gas diffusion electrode, used in fuel cells and CO2 electrolyzers, where a thin, uniform, and crack-free catalyst layer is crucial to efficient operation.

“Electrodes play a vital role in all devices based on heterogeneous electrochemical reactions for energy conversion, energy storage, and chemical synthesis,” explained Molly Jhong, a graduate student at the Department of Chemical and Biomolecular Engineering (ChemE) and first author of a paper appearing in Advanced Energy Materials. “The performance and durability of these devices is largely determined by the processes that occur at the catalyst layer-electrolyte interface.

“With this research, we have developed a combined approach of MicroCT-based visualization and microfluidic-based electrochemical analysis that allows changes in electrode performance to be directly correlated to differences in catalyst layer structure," Jhong added. "This can guide electrode optimization, including improved catalyst utilization, for a variety of electrochemical energy conversion systems."

The combined approach of MicroCT-based visualization and microfluidic-based electrochemical analysis offers a framework for systematic investigation of electrode-based electrochemical processes such as fuel cells, water electrolyzers to produce hydrogen and oxygen, and carbon dioxide electrolyzers for production of useful chemicals or for energy storage.

The researchers chose X-ray tomography because it provides 3-D material-specific information, in a non-destructive fashion, with high spatial and temporal resolution. This technique has been increasingly employed to better understand, control, and enhance the complex material science that underlies the performance and durability of electrochemical energy technologies.

According to Jhong, the commercialization of polymer-electrolyte membrane fuel cells has been limited by the cathodic oxygen reduction reaction because it requires high loadings of expensive platinum catalyst to achieve performance benchmarks. Similarly, the development of economically-feasible electrochemical reactors to convert carbon dioxide to value-added chemicals requires the advent of catalytic material with high activity and selectivity. Significant efforts have focused on engineering the catalyst layer structure to maximize catalyst utilization as well as overall electrode and system performance for both applications.

“By coupling structural analysis with in-situ electrochemical characterization, we directly correlate variation in catalyst layer morphology to electrode performance,” she said. “MicroCT and scanning electron microscopy analyses indicate that more uniform catalyst distribution and less particle agglomeration, lead to better performance.” This will benefit the development of new materials and improved processing methodologies for catalyst layer deposition and electrode preparation and may lead to economically-viable electrochemical systems to help address climate change and shift society towards the use of renewable energy sources.

The analyses reported in the research allow for the observed differences over a large geometric volume as a function of preparation methods to be quantified and explained for the first time.

“The research reported the state-of-the-art performance of the electrochemical reduction of CO2 to CO: highest conversion, and excellent product selectivity at very low catalyst loading,” Jhong says “The success of improving performance while largely reducing the loading of precious metal catalysts showcases that the combined MicroCT and electrochemical approach works well and does guide electrode optimization.”

In addition to Jhong, authors of the research paper, “The Effects of Catalyst Layer Deposition Methodology on Electrode Performance,” include ChemE professor Paul Kenis, MIT assistant professor and Illinois alumnus Fikile Brushett, and Dr. Leilei Yin, research scientist from the Beckman Institute at Illinois.

Contact: Paul Kenis, Department of Chemical and Biomolecular Engineering University of Illinois at Urbana-Champaign, 217/265-0523.

Writer: Sarah Williams, assistant director of communications, Department of Chemical and Biomolecular Engineering, 217/244-0541.

If you have any questions about the College of Engineering, or other story ideas, contact Rick Kubetz, editor, Engineering Communications Office, University of Illinois at Urbana-Champaign, 217/244-7716.

Paul Kenis | EurekAlert!
Further information:
http://www.illinois.edu
http://engineering.illinois.edu/news/2013/07/09/new-analytical-methodology-can-guide-electrode-optimization

More articles from Materials Sciences:

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>