Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New analytical methodology can guide electrode optimization

10.07.2013
Using a new analytical methodology--a coupled micro-computed X-ray tomography (MicroCT) and microfluidic-based electrochemical analysis--researchers at the University of Illinois at Urbana-Champaign are gaining new insights into electrode structure-performance relationships for energy conversion and storage devices.

A 3-D rendering of a gas diffusion electrode, used in fuel cells and CO2 electrolyzers, where a thin, uniform, and crack-free catalyst layer is crucial to efficient operation.


A 3-D rendering of a gas diffusion electrode, used in fuel cells and CO2 electrolyzers, where a thin, uniform, and crack-free catalyst layer is crucial to efficient operation.

“Electrodes play a vital role in all devices based on heterogeneous electrochemical reactions for energy conversion, energy storage, and chemical synthesis,” explained Molly Jhong, a graduate student at the Department of Chemical and Biomolecular Engineering (ChemE) and first author of a paper appearing in Advanced Energy Materials. “The performance and durability of these devices is largely determined by the processes that occur at the catalyst layer-electrolyte interface.

“With this research, we have developed a combined approach of MicroCT-based visualization and microfluidic-based electrochemical analysis that allows changes in electrode performance to be directly correlated to differences in catalyst layer structure," Jhong added. "This can guide electrode optimization, including improved catalyst utilization, for a variety of electrochemical energy conversion systems."

The combined approach of MicroCT-based visualization and microfluidic-based electrochemical analysis offers a framework for systematic investigation of electrode-based electrochemical processes such as fuel cells, water electrolyzers to produce hydrogen and oxygen, and carbon dioxide electrolyzers for production of useful chemicals or for energy storage.

The researchers chose X-ray tomography because it provides 3-D material-specific information, in a non-destructive fashion, with high spatial and temporal resolution. This technique has been increasingly employed to better understand, control, and enhance the complex material science that underlies the performance and durability of electrochemical energy technologies.

According to Jhong, the commercialization of polymer-electrolyte membrane fuel cells has been limited by the cathodic oxygen reduction reaction because it requires high loadings of expensive platinum catalyst to achieve performance benchmarks. Similarly, the development of economically-feasible electrochemical reactors to convert carbon dioxide to value-added chemicals requires the advent of catalytic material with high activity and selectivity. Significant efforts have focused on engineering the catalyst layer structure to maximize catalyst utilization as well as overall electrode and system performance for both applications.

“By coupling structural analysis with in-situ electrochemical characterization, we directly correlate variation in catalyst layer morphology to electrode performance,” she said. “MicroCT and scanning electron microscopy analyses indicate that more uniform catalyst distribution and less particle agglomeration, lead to better performance.” This will benefit the development of new materials and improved processing methodologies for catalyst layer deposition and electrode preparation and may lead to economically-viable electrochemical systems to help address climate change and shift society towards the use of renewable energy sources.

The analyses reported in the research allow for the observed differences over a large geometric volume as a function of preparation methods to be quantified and explained for the first time.

“The research reported the state-of-the-art performance of the electrochemical reduction of CO2 to CO: highest conversion, and excellent product selectivity at very low catalyst loading,” Jhong says “The success of improving performance while largely reducing the loading of precious metal catalysts showcases that the combined MicroCT and electrochemical approach works well and does guide electrode optimization.”

In addition to Jhong, authors of the research paper, “The Effects of Catalyst Layer Deposition Methodology on Electrode Performance,” include ChemE professor Paul Kenis, MIT assistant professor and Illinois alumnus Fikile Brushett, and Dr. Leilei Yin, research scientist from the Beckman Institute at Illinois.

Contact: Paul Kenis, Department of Chemical and Biomolecular Engineering University of Illinois at Urbana-Champaign, 217/265-0523.

Writer: Sarah Williams, assistant director of communications, Department of Chemical and Biomolecular Engineering, 217/244-0541.

If you have any questions about the College of Engineering, or other story ideas, contact Rick Kubetz, editor, Engineering Communications Office, University of Illinois at Urbana-Champaign, 217/244-7716.

Paul Kenis | EurekAlert!
Further information:
http://www.illinois.edu
http://engineering.illinois.edu/news/2013/07/09/new-analytical-methodology-can-guide-electrode-optimization

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>