Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New analysers to unlock mineral value

08.10.2009
Machine-mounted sensors, being developed through CSIRO Minerals Down Under Flagship, could help locate ore deposits, characterise the mining environment, and differentiate ore grades.

Scientists are working on a new range of materials characterisation analysers and techniques that could help unlock the value contained in Australia’s mineral deposits and improve processing performance, according to the October issue of Process.

Machine-mounted sensors, being developed through CSIRO Minerals Down Under Flagship, could help locate ore deposits, characterise the mining environment, and differentiate ore grades.

This will enable automated mining machines to respond ‘intelligently’ to the changing detail of the environment and offer real-time amendments to the mine plan.

Another prototype in development combines the best features of two existing materials characterisation techniques – x-ray diffraction and x-ray fluorescence – into a new slurry analyser.

The new prototype, dubbed XRDF for its dual origins, is capable of measuring both mineralogy and ultra-low elemental composition directly on a process-stream, without the need for labour-intensive, time-consuming and potentially error-prone sampling.

CSIRO scientist Dr James Tickner said the new prototype could offer a number of benefits over existing on-stream analysers.

“We’re not aware of any other system capable of doing accurate, on-stream mineralogy,” Dr Tickner said.

“The ability to detect elements at parts-per-billion levels in an on-stream system is unique.”

“We’re not aware of any other system capable of doing accurate, on-stream mineralogy,”

Dr Tickner saidDr Tickner and his team are also working on gamma-activation analysis – a new analysis method that may deliver all the benefits of neutron activation without the need for a nuclear reactor.

The method is expected to provide accurate, multi-element analysis of mineral samples without extensive sample preparation, and measure very low levels of more than 30 elements in samples weighing just a few hundred grams.

The method could significantly improve sampling accuracy.

Other stories in this issue of Process include:

Automated analysis creates commercial edge: An automated image analysis system that quantifies the mineralogy of ores is helping a mineral sands company better understand its deposits

Aluminium could hold the key to Ranger water purification: A range of materials characterisation techniques have helped Energy Resources Australia examine potential water treatment strategies for treating process water at the mine so that it can be safely disposed.

These and other stories can be found in the October issue of Process, which will be released on Thursday 8 October.

National Research Flagships

CSIRO initiated the National Research Flagships to provide science-based solutions in response to Australia’s major research challenges and opportunities. The 10 Flagships form multidisciplinary teams with industry and the research community to deliver impact and benefits for Australia.

Marina Johnson | EurekAlert!
Further information:
http://www.csiro.au

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>