Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ames Laboratory scientists solve riddle of strangely behaving magnetic material

24.06.2013
Materials scientists at the U.S. Department of Energy’s (DOE) Ames Laboratory have found an accurate way to explain the magnetic properties of a compound that has mystified the scientific community for decades.

The compound of lanthanum, cobalt and oxygen (LaCoO3) has been a puzzle for over 50 years, due to its strange behavior. While most materials tend to lose magnetism at higher temperatures, pure LaCoO3 is a non-magnetic semiconductor at low temperatures, but as the temperature is raised, it becomes magnetic. With the addition of strontium on the La sites the magnetic properties become even more prominent until, at 18 percent strontium, the compound becomes metallic and ferromagnetic, like iron.

“It’s just strange stuff. The material has attracted a lot of attention since about 1957, when people started picking it up and really studying it,” said Bruce Harmon, senior scientist at the Ames Laboratory. “Since then, there have been over 2000 pertinent papers published.”

Traditional theories to describe the compound’s behavior originated with physicist John B. Goodenough, who postulated that as temperature rises, the spin state of the d-electrons of cobalt changes, yielding a net magnetic moment.

“Back then it was more of a chemist’s atomic model of electron orbits that suggested what might be going on,” explained Harmon. “It’s a very local orbital picture and that theory has persisted to this day. It’s become more sophisticated, but almost all the theoretical descriptions are based on that model.”

But when Ames Laboratory research partners at the Argonne National Laboratory and the University of California, Santa Cruz performed X-ray absorption spectroscopy measurements of the material, the theory didn’t fit what they were observing.
”They knew that we could calculate x-ray absorption and magnetic dichroism, so we started doing that. It is a case where we fell into doing what we thought was a routine calculation, and it turned out we discovered a totally different explanation,” said Harmon. “We found we could explain pretty much everything in really nice detail, but without explicitly invoking that local model,” said Harmon.

The scientists found that a small rhombohedral distortion of the LaCoO3 lattice structure, which had largely been ignored, was key.

“We found that the total electronic energy of the lattice depends sensitively on that distortion,” explained Harmon. “If the distortion becomes smaller (the crystal moves closer to becoming cubic), the magnetic state of the crystal switches from non-magnetic to a state with 1.3 Bohr magnetons per Co atom.”

Ames Laboratory scientists Bruce Harmon and Yongbin Lee partnered with the researchers at the Argonne National Laboratory and the University of California, Santa Cruz to publish a paper in Physical Review Letters, “Evolution of Magnetic Oxygen States in Sr-Doped LaCO3.”

This new understanding may help the further development of these materials, which are easily reduced to nanoparticles; these are finding use in catalytic oxidation and reduction reactions associated with regulation of noxious emissions from motor vehicles.

The research is supported by the U.S. Department of Energy Office of Science through the Ames Laboratory.

The Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. The Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Laura Millsaps | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Materials Sciences:

nachricht Researchers devise microreactor to study formation of methane hydrate
23.08.2017 | NYU Tandon School of Engineering

nachricht Meter-sized single-crystal graphene growth becomes possible
22.08.2017 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>