Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ames Laboratory scientists solve riddle of strangely behaving magnetic material

24.06.2013
Materials scientists at the U.S. Department of Energy’s (DOE) Ames Laboratory have found an accurate way to explain the magnetic properties of a compound that has mystified the scientific community for decades.

The compound of lanthanum, cobalt and oxygen (LaCoO3) has been a puzzle for over 50 years, due to its strange behavior. While most materials tend to lose magnetism at higher temperatures, pure LaCoO3 is a non-magnetic semiconductor at low temperatures, but as the temperature is raised, it becomes magnetic. With the addition of strontium on the La sites the magnetic properties become even more prominent until, at 18 percent strontium, the compound becomes metallic and ferromagnetic, like iron.

“It’s just strange stuff. The material has attracted a lot of attention since about 1957, when people started picking it up and really studying it,” said Bruce Harmon, senior scientist at the Ames Laboratory. “Since then, there have been over 2000 pertinent papers published.”

Traditional theories to describe the compound’s behavior originated with physicist John B. Goodenough, who postulated that as temperature rises, the spin state of the d-electrons of cobalt changes, yielding a net magnetic moment.

“Back then it was more of a chemist’s atomic model of electron orbits that suggested what might be going on,” explained Harmon. “It’s a very local orbital picture and that theory has persisted to this day. It’s become more sophisticated, but almost all the theoretical descriptions are based on that model.”

But when Ames Laboratory research partners at the Argonne National Laboratory and the University of California, Santa Cruz performed X-ray absorption spectroscopy measurements of the material, the theory didn’t fit what they were observing.
”They knew that we could calculate x-ray absorption and magnetic dichroism, so we started doing that. It is a case where we fell into doing what we thought was a routine calculation, and it turned out we discovered a totally different explanation,” said Harmon. “We found we could explain pretty much everything in really nice detail, but without explicitly invoking that local model,” said Harmon.

The scientists found that a small rhombohedral distortion of the LaCoO3 lattice structure, which had largely been ignored, was key.

“We found that the total electronic energy of the lattice depends sensitively on that distortion,” explained Harmon. “If the distortion becomes smaller (the crystal moves closer to becoming cubic), the magnetic state of the crystal switches from non-magnetic to a state with 1.3 Bohr magnetons per Co atom.”

Ames Laboratory scientists Bruce Harmon and Yongbin Lee partnered with the researchers at the Argonne National Laboratory and the University of California, Santa Cruz to publish a paper in Physical Review Letters, “Evolution of Magnetic Oxygen States in Sr-Doped LaCO3.”

This new understanding may help the further development of these materials, which are easily reduced to nanoparticles; these are finding use in catalytic oxidation and reduction reactions associated with regulation of noxious emissions from motor vehicles.

The research is supported by the U.S. Department of Energy Office of Science through the Ames Laboratory.

The Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. The Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Laura Millsaps | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>