Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ames Laboratory scientists solve riddle of strangely behaving magnetic material

24.06.2013
Materials scientists at the U.S. Department of Energy’s (DOE) Ames Laboratory have found an accurate way to explain the magnetic properties of a compound that has mystified the scientific community for decades.

The compound of lanthanum, cobalt and oxygen (LaCoO3) has been a puzzle for over 50 years, due to its strange behavior. While most materials tend to lose magnetism at higher temperatures, pure LaCoO3 is a non-magnetic semiconductor at low temperatures, but as the temperature is raised, it becomes magnetic. With the addition of strontium on the La sites the magnetic properties become even more prominent until, at 18 percent strontium, the compound becomes metallic and ferromagnetic, like iron.

“It’s just strange stuff. The material has attracted a lot of attention since about 1957, when people started picking it up and really studying it,” said Bruce Harmon, senior scientist at the Ames Laboratory. “Since then, there have been over 2000 pertinent papers published.”

Traditional theories to describe the compound’s behavior originated with physicist John B. Goodenough, who postulated that as temperature rises, the spin state of the d-electrons of cobalt changes, yielding a net magnetic moment.

“Back then it was more of a chemist’s atomic model of electron orbits that suggested what might be going on,” explained Harmon. “It’s a very local orbital picture and that theory has persisted to this day. It’s become more sophisticated, but almost all the theoretical descriptions are based on that model.”

But when Ames Laboratory research partners at the Argonne National Laboratory and the University of California, Santa Cruz performed X-ray absorption spectroscopy measurements of the material, the theory didn’t fit what they were observing.
”They knew that we could calculate x-ray absorption and magnetic dichroism, so we started doing that. It is a case where we fell into doing what we thought was a routine calculation, and it turned out we discovered a totally different explanation,” said Harmon. “We found we could explain pretty much everything in really nice detail, but without explicitly invoking that local model,” said Harmon.

The scientists found that a small rhombohedral distortion of the LaCoO3 lattice structure, which had largely been ignored, was key.

“We found that the total electronic energy of the lattice depends sensitively on that distortion,” explained Harmon. “If the distortion becomes smaller (the crystal moves closer to becoming cubic), the magnetic state of the crystal switches from non-magnetic to a state with 1.3 Bohr magnetons per Co atom.”

Ames Laboratory scientists Bruce Harmon and Yongbin Lee partnered with the researchers at the Argonne National Laboratory and the University of California, Santa Cruz to publish a paper in Physical Review Letters, “Evolution of Magnetic Oxygen States in Sr-Doped LaCO3.”

This new understanding may help the further development of these materials, which are easily reduced to nanoparticles; these are finding use in catalytic oxidation and reduction reactions associated with regulation of noxious emissions from motor vehicles.

The research is supported by the U.S. Department of Energy Office of Science through the Ames Laboratory.

The Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. The Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Laura Millsaps | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Materials Sciences:

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

nachricht CWRU directly measures how perovskite solar films efficiently convert light to power
12.01.2017 | Case Western Reserve University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>