Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Allure of pineapple

04.10.2010
Alluring dresses from pineapple? Scientists in Malaysia are looking into the potential of another ‘cotton’ – the pineapple. Jamil Salleh of UiTM, Shah Alam, Malaysia is to asses techniques to extract the long fibres of the pineapple leaves.

Lanky models strutting in cotton, linen and silk, making statement for beautiful creations - why not make statement with a ‘pineapple’? Alluring dresses from pineapple? It could be. Often we heard mothers reminiscing their hard times during the Japanese occupation sewing with threads from pineapple leaves. If so, can we spin yarn from pineapple leaves threads then? After all, we have been relying on plants for clothings – the cotton. Now scientists in Malaysia are looking into the potential of another ‘cotton’ – the pineapple.

Jamil Salleh’s study is timely as we have scores of pineapple plantations with tonnes of leaves burnt away. There has been not much interest in pineapple fibres in our country. Hence, he is optimist that abundantly pineapple fibres in Malaysia, if extracted, can be marketed as ‘exotic’ textile. A good news for fashion designers Zang Toi or Bernard Chandran? For them it could be a work of mix and match for another charming creation. A good understanding of the extraction methods will be good for them. Thus Jamil will try to establish the best extraction to get the best of the fibres.

Jamil will experiment on the long fibres of the leaves by scrapping and retting. It is a preliminary study to assess the best technique to extract the fibres from the leaves. Scrapping is a traditional method where the epidermal tissue of the leaves is scrapped from the surface and back of the leaves using broken plate or coconut shell to expose the fibres. As much as 500 leaves can be scrapped in a day by an expert scrapper. It is tedious, time consuming and labor intensive. After scrapping, the fibres will be washed thoroughly with water and then air-dried.

Apart from scrapping, the fibre can also be extracted by retting. Retting is the use of micro organism and moisture to dissolve or rot away the epidermal tissue and pectine of the leaves, which will separate the fibre from the leaves. There are many types of water retting such as still water, running water and dew and rain retting. These methods are slow and consumes time, hence less popular. However, around 2.5 - 3.5% of fibre can be recovered from both methods.

Other than that, Jamil and collegues are looking into chemical retting under alkaline condition and microbes as they have been used to extract other fibres such as flax and kenaf. It was found that fibers produced from microbe retting are with higher residual gum content and lower elongation but better tenacity and softness. Other other hand, chemical retting produces lower tenacity and thicker fibre; and water retting produces weak and low quality fibre.

The fibres will be extracted from pineapple leaves by scrapping and retting method. To scrape, porcelain scrap will be used to remove the epidermal tissue of the leaves. For retting, four methods will be employed which are immersion in water for certain duration, use of NaOH/acetic acid and EDTA, use of enzyme (xylanase/pectinase/cellulase), and combination of chemical and enzyme retting. Other mechanical extraction methods using special fabricated equipment will also be experimented.

The strength of the extracted fibres will be evaluated using tests of linear density, tenacity, microscopic appearance, micronaire and fibre strength. Then, the fibres will be hand-spun into yarn or dref spinning. The spun yarn then will be tested for its physical properties such as linear density (count), single strength, yarn appearance and hairiness. A comparison fibre and yarn properties with regards to the extraction techniques employed will be evaluated to determine the best fibre extraction technique.

Contact:

Jamil Salleh
Wan Yunus Wan Ahmad
Mohd Rozi Ahmad
Mohd. Iqbal Misnon
Department of Textile Technology, Faculty of Applied Sciences
UniversityTeknologi MARA
Shah Alam
Email: jamilsal@salam.uitm.edu.my

Megawati Omar | Research asia research news
Further information:
http://inforec.uitm.edu.my
http://www.researchsea.com

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>