Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Allure of pineapple

04.10.2010
Alluring dresses from pineapple? Scientists in Malaysia are looking into the potential of another ‘cotton’ – the pineapple. Jamil Salleh of UiTM, Shah Alam, Malaysia is to asses techniques to extract the long fibres of the pineapple leaves.

Lanky models strutting in cotton, linen and silk, making statement for beautiful creations - why not make statement with a ‘pineapple’? Alluring dresses from pineapple? It could be. Often we heard mothers reminiscing their hard times during the Japanese occupation sewing with threads from pineapple leaves. If so, can we spin yarn from pineapple leaves threads then? After all, we have been relying on plants for clothings – the cotton. Now scientists in Malaysia are looking into the potential of another ‘cotton’ – the pineapple.

Jamil Salleh’s study is timely as we have scores of pineapple plantations with tonnes of leaves burnt away. There has been not much interest in pineapple fibres in our country. Hence, he is optimist that abundantly pineapple fibres in Malaysia, if extracted, can be marketed as ‘exotic’ textile. A good news for fashion designers Zang Toi or Bernard Chandran? For them it could be a work of mix and match for another charming creation. A good understanding of the extraction methods will be good for them. Thus Jamil will try to establish the best extraction to get the best of the fibres.

Jamil will experiment on the long fibres of the leaves by scrapping and retting. It is a preliminary study to assess the best technique to extract the fibres from the leaves. Scrapping is a traditional method where the epidermal tissue of the leaves is scrapped from the surface and back of the leaves using broken plate or coconut shell to expose the fibres. As much as 500 leaves can be scrapped in a day by an expert scrapper. It is tedious, time consuming and labor intensive. After scrapping, the fibres will be washed thoroughly with water and then air-dried.

Apart from scrapping, the fibre can also be extracted by retting. Retting is the use of micro organism and moisture to dissolve or rot away the epidermal tissue and pectine of the leaves, which will separate the fibre from the leaves. There are many types of water retting such as still water, running water and dew and rain retting. These methods are slow and consumes time, hence less popular. However, around 2.5 - 3.5% of fibre can be recovered from both methods.

Other than that, Jamil and collegues are looking into chemical retting under alkaline condition and microbes as they have been used to extract other fibres such as flax and kenaf. It was found that fibers produced from microbe retting are with higher residual gum content and lower elongation but better tenacity and softness. Other other hand, chemical retting produces lower tenacity and thicker fibre; and water retting produces weak and low quality fibre.

The fibres will be extracted from pineapple leaves by scrapping and retting method. To scrape, porcelain scrap will be used to remove the epidermal tissue of the leaves. For retting, four methods will be employed which are immersion in water for certain duration, use of NaOH/acetic acid and EDTA, use of enzyme (xylanase/pectinase/cellulase), and combination of chemical and enzyme retting. Other mechanical extraction methods using special fabricated equipment will also be experimented.

The strength of the extracted fibres will be evaluated using tests of linear density, tenacity, microscopic appearance, micronaire and fibre strength. Then, the fibres will be hand-spun into yarn or dref spinning. The spun yarn then will be tested for its physical properties such as linear density (count), single strength, yarn appearance and hairiness. A comparison fibre and yarn properties with regards to the extraction techniques employed will be evaluated to determine the best fibre extraction technique.

Contact:

Jamil Salleh
Wan Yunus Wan Ahmad
Mohd Rozi Ahmad
Mohd. Iqbal Misnon
Department of Textile Technology, Faculty of Applied Sciences
UniversityTeknologi MARA
Shah Alam
Email: jamilsal@salam.uitm.edu.my

Megawati Omar | Research asia research news
Further information:
http://inforec.uitm.edu.my
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

nachricht Multitasking monolayers
25.07.2017 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>