Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Allure of pineapple

04.10.2010
Alluring dresses from pineapple? Scientists in Malaysia are looking into the potential of another ‘cotton’ – the pineapple. Jamil Salleh of UiTM, Shah Alam, Malaysia is to asses techniques to extract the long fibres of the pineapple leaves.

Lanky models strutting in cotton, linen and silk, making statement for beautiful creations - why not make statement with a ‘pineapple’? Alluring dresses from pineapple? It could be. Often we heard mothers reminiscing their hard times during the Japanese occupation sewing with threads from pineapple leaves. If so, can we spin yarn from pineapple leaves threads then? After all, we have been relying on plants for clothings – the cotton. Now scientists in Malaysia are looking into the potential of another ‘cotton’ – the pineapple.

Jamil Salleh’s study is timely as we have scores of pineapple plantations with tonnes of leaves burnt away. There has been not much interest in pineapple fibres in our country. Hence, he is optimist that abundantly pineapple fibres in Malaysia, if extracted, can be marketed as ‘exotic’ textile. A good news for fashion designers Zang Toi or Bernard Chandran? For them it could be a work of mix and match for another charming creation. A good understanding of the extraction methods will be good for them. Thus Jamil will try to establish the best extraction to get the best of the fibres.

Jamil will experiment on the long fibres of the leaves by scrapping and retting. It is a preliminary study to assess the best technique to extract the fibres from the leaves. Scrapping is a traditional method where the epidermal tissue of the leaves is scrapped from the surface and back of the leaves using broken plate or coconut shell to expose the fibres. As much as 500 leaves can be scrapped in a day by an expert scrapper. It is tedious, time consuming and labor intensive. After scrapping, the fibres will be washed thoroughly with water and then air-dried.

Apart from scrapping, the fibre can also be extracted by retting. Retting is the use of micro organism and moisture to dissolve or rot away the epidermal tissue and pectine of the leaves, which will separate the fibre from the leaves. There are many types of water retting such as still water, running water and dew and rain retting. These methods are slow and consumes time, hence less popular. However, around 2.5 - 3.5% of fibre can be recovered from both methods.

Other than that, Jamil and collegues are looking into chemical retting under alkaline condition and microbes as they have been used to extract other fibres such as flax and kenaf. It was found that fibers produced from microbe retting are with higher residual gum content and lower elongation but better tenacity and softness. Other other hand, chemical retting produces lower tenacity and thicker fibre; and water retting produces weak and low quality fibre.

The fibres will be extracted from pineapple leaves by scrapping and retting method. To scrape, porcelain scrap will be used to remove the epidermal tissue of the leaves. For retting, four methods will be employed which are immersion in water for certain duration, use of NaOH/acetic acid and EDTA, use of enzyme (xylanase/pectinase/cellulase), and combination of chemical and enzyme retting. Other mechanical extraction methods using special fabricated equipment will also be experimented.

The strength of the extracted fibres will be evaluated using tests of linear density, tenacity, microscopic appearance, micronaire and fibre strength. Then, the fibres will be hand-spun into yarn or dref spinning. The spun yarn then will be tested for its physical properties such as linear density (count), single strength, yarn appearance and hairiness. A comparison fibre and yarn properties with regards to the extraction techniques employed will be evaluated to determine the best fibre extraction technique.

Contact:

Jamil Salleh
Wan Yunus Wan Ahmad
Mohd Rozi Ahmad
Mohd. Iqbal Misnon
Department of Textile Technology, Faculty of Applied Sciences
UniversityTeknologi MARA
Shah Alam
Email: jamilsal@salam.uitm.edu.my

Megawati Omar | Research asia research news
Further information:
http://inforec.uitm.edu.my
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>