Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

African scientist, designer partner to fashion anti-malaria garment that wards off bugs

09.05.2012
A Cornell University scientist and designer from Africa have together created a fashionable hooded bodysuit embedded at the molecular level with insecticides for warding off mosquitoes infected with malaria, a disease estimated to kill 655,000 people annually on the continent.

Though insecticide-treated nets are commonly used to drive away mosquitoes from African homes, the Cornell prototype garment can be worn throughout the day to provide extra protection and does not dissipate easily like skin-based repellants.


Sandy Mattei models a design by Matilda Ceesay, a Cornell apparel design major from Gambia, at the Cornell Fashion Collective Runway Show, April 28.
Credit: Mark Vorreuter

By binding repellant and fabric at the nanolevel using metal organic framework molecules - which are clustered crystalline compounds - the mesh fabric can be loaded with up to three times more insecticide than normal fibrous nets, which usually wear off after about six months.

"The bond on our fabric is very difficult to break," said Frederick Ochanda, postdoctoral associate in Cornell's Department of Fiber Science & Apparel Design and a native of Kenya. "The nets in use now are dipped in a solution and not bonded in this way, so their effectiveness doesn't last very long."

The colorful garment, fashioned by Matilda Ceesay, a Cornell apparel design undergraduate from Gambia, debuted on the runway at the Cornell Fashion Collective spring fashion show April 28 on the Cornell campus. It consists of an underlying one-piece body suit, hand-dyed in vibrant hues of purple, gold and blue, and a mesh hood and cape containing the repellant. The outfit is one of six in Ceesay's collection, which she said "explores and modernizes traditional African silhouettes and textiles by embracing the strength and sexuality of the modern woman."

Ochanda and Ceesay, from opposite sides of the continent, both have watched family members suffer from the disease. Ceesay recalls a family member who was ailing and subsequently died after doctors treated her for malaria when she had a different sickness. "It's so common back home, you can't escape it," Ceesay said.

"Seeing malaria's effect on people in Kenya, it's very important for me to apply fiber science to help this problem," Ochanda added. "A long-term goal of science is to be able to come up with solutions to help protect human health and life, so this project is very fulfilling for me."

Ultimately, Ceesay and Ochanda hope the outfit they developed will serve as a prototype to drive new technologies for fighting the spread of malaria. On the horizon, Ochanda said, is a fabric that releases repellant in response to changes in temperature or light – offering wearers more protection at night when mosquitoes are on the hunt. At minimum, they hope the technology can be applied to create longer-lasting insecticide-laden bed nets.

"Although there are already mosquito nets being used, the solution isn't foolproof," Ceesay said. "People are still getting sick and dying. We can't get complacent. I hope my design can show what is possible when you bring together fashion and science and will inspire others to keep improving the technology. If a student at Cornell can do this, imagine how far it could go."

Syl Kacapyr | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>