Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adherence to rough surfaces

07.09.2011
The little yellow self-adhesive notes are common companions in daily office life; but they stick only to smooth surfaces such as paper, windows, mirrors or screens.

Geckos, insects and spiders do even better: They stick to walls and ceilings and move along them. Hair-like fibrils covering their feet allow these animals to not only "stick" headfirst to glass and smooth surfaces but also move along walls with woodchip wallpaper due to the fact that the hair-like fibrils branch out further into even finer structures. Scientists at INM – Leibniz Institute for New Materials will now reproduce such "hierarchical" structures in a new project granted recently by DFG.


sticking like a gecko
copyright Bellhäuser, only for use relating to this release

The project will join forces between two INM groups – Functional Surfaces (led by Prof. Arzt) and Structure Formation (directed by Dr. Kraus).

For this purpose, the scientists will test the structures for their adhesive force using specifically developed measurement methods. In order to understand why hierarchical structures provide a better adherence, the scientists also use computer-based models. "In this project, we seek to find out the best way of developing hierarchical structures, and we seek to analyze what these structures are able to do – with this we aim to understand why adhesion to rough surfaces is possible at all," explains Eduard Arzt, the Scientific Director of INM and Head of the Program Division "Functional Surfaces".

Basically, the principle of gecko adhesion is known. It is based on many thin hair-like structures with varying diamteres which provide a better adherence than thick structures. "Imagine a brush, whose bristles branch out downwards getting thinner and thinner," explains Tobias Kraus, Head of the Junior Research Group "Structure Formation at Small Scales". "With their rough bristles, they sweep off big stones. In order to remove fine dust or sand, they sweep with less pressure so that the fine bristles catch the dust," says Kraus. And the same applies to the gecko: The animal uses fine fibrils for fine unevenness and rough fibrils for rough unevenness.

"At the present state of the art, it is no longer a problem to fabricate structures with only one ‘fibril size'," says Arzt. For this purpose, the scientists use a molding technique. A liquid polymer is filled into a template of the "fibrils", where it hardens. The finished cast is then removed from the template. The result is a surface on which "fibrils" of the same size are arranged regularly.

With a new method, the scientists also seek to fabricate a branching into even finer fibrils. "The challenge is to produce a regular and narrow-spaced structure of these finest branches in the template," says the Chemical Engineer Kraus. Layer by layer, the scientists thus receive even more branched structures, starting with the thickest bristle.

Background:
The project "Adhesion Mechanisms in Micropatterned Dry Adhesives with Hierarchical Structure" is one of 14 projects promoted by Germany's largest research funding organization DFG (Deutsche Forschungsgemeinschaft) in its priority program "Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials" (SPP 1420). In this program, leading groups from Germany explore the special properties of natural materials evolving from hierarchical structures. In addition to the scientists from INM, further top-class international scientists from the USA and a Humboldt scholarship holder are involved in this project, which started in August 2011.

Contact:

Dr. Tobias Kraus
INM – Leibniz Institute for New Materials
Phone: (+49) 681 930 389
E-mail: Tobias.kraus@inm-gmbh.de
Prof. Dr. Eduard Arzt
INM – Leibniz Institute for New Materials
Phone: (+49) 681 9300 500
E-mail: Eduard.arzt@inm-gmbh.de
INM is focused on the research and development of materials – for today, tomorrow and the future. Chemists, physicists, biologists, materials and engineering scientists shape the work at INM. From molecule to pilot production, they follow the recurring questions: Which material properties are new, how can they be investigated and how can they be used in the future?

INM – Leibniz Institute for New Materials, situated in Saarbrücken/Germany, is an internationally leading centre for materials research. It is a scientific partner to national and international institutes and a provider of research and development for companies throughout the world. INM is an institute of the Scientific Association Gottfried Wilhelm Leibniz and employs around 190 collaborators. Its main research fields are Chemical Nanotechnology, Interface Materials, and Materials in Biology.

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de/

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>