Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adherence to rough surfaces

07.09.2011
The little yellow self-adhesive notes are common companions in daily office life; but they stick only to smooth surfaces such as paper, windows, mirrors or screens.

Geckos, insects and spiders do even better: They stick to walls and ceilings and move along them. Hair-like fibrils covering their feet allow these animals to not only "stick" headfirst to glass and smooth surfaces but also move along walls with woodchip wallpaper due to the fact that the hair-like fibrils branch out further into even finer structures. Scientists at INM – Leibniz Institute for New Materials will now reproduce such "hierarchical" structures in a new project granted recently by DFG.


sticking like a gecko
copyright Bellhäuser, only for use relating to this release

The project will join forces between two INM groups – Functional Surfaces (led by Prof. Arzt) and Structure Formation (directed by Dr. Kraus).

For this purpose, the scientists will test the structures for their adhesive force using specifically developed measurement methods. In order to understand why hierarchical structures provide a better adherence, the scientists also use computer-based models. "In this project, we seek to find out the best way of developing hierarchical structures, and we seek to analyze what these structures are able to do – with this we aim to understand why adhesion to rough surfaces is possible at all," explains Eduard Arzt, the Scientific Director of INM and Head of the Program Division "Functional Surfaces".

Basically, the principle of gecko adhesion is known. It is based on many thin hair-like structures with varying diamteres which provide a better adherence than thick structures. "Imagine a brush, whose bristles branch out downwards getting thinner and thinner," explains Tobias Kraus, Head of the Junior Research Group "Structure Formation at Small Scales". "With their rough bristles, they sweep off big stones. In order to remove fine dust or sand, they sweep with less pressure so that the fine bristles catch the dust," says Kraus. And the same applies to the gecko: The animal uses fine fibrils for fine unevenness and rough fibrils for rough unevenness.

"At the present state of the art, it is no longer a problem to fabricate structures with only one ‘fibril size'," says Arzt. For this purpose, the scientists use a molding technique. A liquid polymer is filled into a template of the "fibrils", where it hardens. The finished cast is then removed from the template. The result is a surface on which "fibrils" of the same size are arranged regularly.

With a new method, the scientists also seek to fabricate a branching into even finer fibrils. "The challenge is to produce a regular and narrow-spaced structure of these finest branches in the template," says the Chemical Engineer Kraus. Layer by layer, the scientists thus receive even more branched structures, starting with the thickest bristle.

Background:
The project "Adhesion Mechanisms in Micropatterned Dry Adhesives with Hierarchical Structure" is one of 14 projects promoted by Germany's largest research funding organization DFG (Deutsche Forschungsgemeinschaft) in its priority program "Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials" (SPP 1420). In this program, leading groups from Germany explore the special properties of natural materials evolving from hierarchical structures. In addition to the scientists from INM, further top-class international scientists from the USA and a Humboldt scholarship holder are involved in this project, which started in August 2011.

Contact:

Dr. Tobias Kraus
INM – Leibniz Institute for New Materials
Phone: (+49) 681 930 389
E-mail: Tobias.kraus@inm-gmbh.de
Prof. Dr. Eduard Arzt
INM – Leibniz Institute for New Materials
Phone: (+49) 681 9300 500
E-mail: Eduard.arzt@inm-gmbh.de
INM is focused on the research and development of materials – for today, tomorrow and the future. Chemists, physicists, biologists, materials and engineering scientists shape the work at INM. From molecule to pilot production, they follow the recurring questions: Which material properties are new, how can they be investigated and how can they be used in the future?

INM – Leibniz Institute for New Materials, situated in Saarbrücken/Germany, is an internationally leading centre for materials research. It is a scientific partner to national and international institutes and a provider of research and development for companies throughout the world. INM is an institute of the Scientific Association Gottfried Wilhelm Leibniz and employs around 190 collaborators. Its main research fields are Chemical Nanotechnology, Interface Materials, and Materials in Biology.

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de/

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>