Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adherence to rough surfaces

07.09.2011
The little yellow self-adhesive notes are common companions in daily office life; but they stick only to smooth surfaces such as paper, windows, mirrors or screens.

Geckos, insects and spiders do even better: They stick to walls and ceilings and move along them. Hair-like fibrils covering their feet allow these animals to not only "stick" headfirst to glass and smooth surfaces but also move along walls with woodchip wallpaper due to the fact that the hair-like fibrils branch out further into even finer structures. Scientists at INM – Leibniz Institute for New Materials will now reproduce such "hierarchical" structures in a new project granted recently by DFG.


sticking like a gecko
copyright Bellhäuser, only for use relating to this release

The project will join forces between two INM groups – Functional Surfaces (led by Prof. Arzt) and Structure Formation (directed by Dr. Kraus).

For this purpose, the scientists will test the structures for their adhesive force using specifically developed measurement methods. In order to understand why hierarchical structures provide a better adherence, the scientists also use computer-based models. "In this project, we seek to find out the best way of developing hierarchical structures, and we seek to analyze what these structures are able to do – with this we aim to understand why adhesion to rough surfaces is possible at all," explains Eduard Arzt, the Scientific Director of INM and Head of the Program Division "Functional Surfaces".

Basically, the principle of gecko adhesion is known. It is based on many thin hair-like structures with varying diamteres which provide a better adherence than thick structures. "Imagine a brush, whose bristles branch out downwards getting thinner and thinner," explains Tobias Kraus, Head of the Junior Research Group "Structure Formation at Small Scales". "With their rough bristles, they sweep off big stones. In order to remove fine dust or sand, they sweep with less pressure so that the fine bristles catch the dust," says Kraus. And the same applies to the gecko: The animal uses fine fibrils for fine unevenness and rough fibrils for rough unevenness.

"At the present state of the art, it is no longer a problem to fabricate structures with only one ‘fibril size'," says Arzt. For this purpose, the scientists use a molding technique. A liquid polymer is filled into a template of the "fibrils", where it hardens. The finished cast is then removed from the template. The result is a surface on which "fibrils" of the same size are arranged regularly.

With a new method, the scientists also seek to fabricate a branching into even finer fibrils. "The challenge is to produce a regular and narrow-spaced structure of these finest branches in the template," says the Chemical Engineer Kraus. Layer by layer, the scientists thus receive even more branched structures, starting with the thickest bristle.

Background:
The project "Adhesion Mechanisms in Micropatterned Dry Adhesives with Hierarchical Structure" is one of 14 projects promoted by Germany's largest research funding organization DFG (Deutsche Forschungsgemeinschaft) in its priority program "Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials" (SPP 1420). In this program, leading groups from Germany explore the special properties of natural materials evolving from hierarchical structures. In addition to the scientists from INM, further top-class international scientists from the USA and a Humboldt scholarship holder are involved in this project, which started in August 2011.

Contact:

Dr. Tobias Kraus
INM – Leibniz Institute for New Materials
Phone: (+49) 681 930 389
E-mail: Tobias.kraus@inm-gmbh.de
Prof. Dr. Eduard Arzt
INM – Leibniz Institute for New Materials
Phone: (+49) 681 9300 500
E-mail: Eduard.arzt@inm-gmbh.de
INM is focused on the research and development of materials – for today, tomorrow and the future. Chemists, physicists, biologists, materials and engineering scientists shape the work at INM. From molecule to pilot production, they follow the recurring questions: Which material properties are new, how can they be investigated and how can they be used in the future?

INM – Leibniz Institute for New Materials, situated in Saarbrücken/Germany, is an internationally leading centre for materials research. It is a scientific partner to national and international institutes and a provider of research and development for companies throughout the world. INM is an institute of the Scientific Association Gottfried Wilhelm Leibniz and employs around 190 collaborators. Its main research fields are Chemical Nanotechnology, Interface Materials, and Materials in Biology.

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de/

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Equipping form with function

23.06.2017 | Information Technology

New design improves performance of flexible wearable electronics

23.06.2017 | Materials Sciences

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>