Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adding Hydrogen Triples Transistor Performance in Graphene

02.09.2011
A technique that uses hydrogen to improve transistor performance on real-world graphene devices has been demonstrated on the wafer-scale by researchers in Penn State’s Electro-Optics Center (EOC).

In a paper published in the August 1, 2011, online edition of Nano Letters, the researchers demonstrated a 3x improvement in electron mobility of epitaxial graphene grown on the silicon face of a 100 mm silicon carbide wafer, as well as a similar improvement in radio-frequency transistor performance.

“There are two faces to a silicon carbide wafer,” explains EOC materials scientist Joshua Robinson. “Graphene grown on the carbon face usually has higher electron mobility, but that’s because beneath the graphene layer grown on the silicon face there is a carbon-rich buffer layer bound to the silicon carbide that acts to scatter electrons, thus reducing their mobility. If you can get rid of the buffer layer, the electrons will go much faster, which means your devices will work faster. It is also easier to control the thickness of the graphene on the silicon face, which is crucial if you want to make highly uniform wafer-scale devices. That’s what we’ve been able to do.”

The paper, titled “Epitaxial Graphene Transistors: Enhancing Performance via Hydrogen Intercalation,” reports an extrinsic cut-off frequency of 24 GHz in transistor performance, the highest reported so far in a real-world epitaxial graphene device, the authors believe. (Extrinsic cut-off frequency is a measure of device speed under operating conditions, and is typically a fraction of intrinsic speeds often reported.) The hydrogenation technique, which was first developed by a group in Germany (Riedl, et al.; Phys. Rev. Lett. 2009, 103, 246804), involves turning the buffer layer into a second, free-floating one-atom-thick layer of graphene by passivating dangling carbon bonds using hydrogen. This results in two free-floating layers of graphene. Penn State researchers, led by Joshua Robinson and David Snyder, have implemented an additional process step to their wafer-scale graphene synthesis process that fully converts the buffer layer to graphene. With this hydrogenation technique, the epitaxial graphene test structures showed a 200-300% increase in carrier mobility, from 700-900 cm2/(V s) to an average of 2050 cm2/(V s) in air and 2375 cm2/(V s) in vacuum.

The Penn State team, which includes lead author Robinson, David Snyder, Matthew Hollander, Michael LaBella, III, Kathleen A. Trumbull and Randy Cavalero, intend to use this technique to improve transistor performance in radio frequency devices. “Graphene’s ambipolar conduction allows you to simplify circuits, while its high mobility and electron velocity provides a means to get to terahertz operation. The problem is that the exemplary frequency response reported to-date in the literature is not the real-world performance.

Hydrogenation and device scaling gets us much closer to true high frequency performance,” Robinson remarks.

In a second paper in the same issue of Nano Letters, the group also reports a novel oxide seeding technique by atomic layer deposition they developed to deposit dielectric materials on wafer-scale epitaxial graphene. Their technique resulted in a 2-3x performance boost over more traditional seeding methods. The authors believe that these two advances constitute the next building blocks in creating viable graphene based technologies for use in radio frequency applications. The second paper, “Enhanced Transport and Transistor Performance with Oxide Seeded High-k Gate Dielectrics on Wafer-Scale Epitaxial Graphene,” was coauthored by Matthew J. Hollander, Michael LaBella, Zachary R. Hughes, Michael Zhu, Kathleen A. Trumbull, Randal Cavalero, David W. Snyder, Xiaojun Wang, Euichul Hwang, Suman Datta, and Joshua A. Robinson, all of Penn State.

Their work on graphene based radio frequency transistors is supported by the Naval Surface Warfare Center, Crane, Indiana. Device fabrication was carried out at the Penn State Materials Research Institute Nanofabrication Facility, with support from the National Nanotechnology Infrastructure Network (NNIN). Joshua A. Robinson, Ph.D., can be contacted at jar403@psu.edu.

The Materials Research Institute coordinates Penn State’s interdisciplinary materials-related research activities, encompassing more than 200 faculty groups. Penn State’s signature scientific research building, the Millennium Science Complex, is scheduled to open in Fall 2011. Housing both the Materials Research Institute and the Huck Institutes for the Life Sciences, this building is designed to integrate the physical and life sciences and engineering. Learn more about materials research and the Millennium Science Complex at www.mri.psu.edu.

| Newswise Science News
Further information:
http://www.mri.psu.edu

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>