Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acoustic resonance testing for nondestructive detection of forged or casted serial parts

07.06.2016

The Fraunhofer Institute for Nondestructive Testing IZFP carries out research and development activities in the field of nondestructive testing processes along the entire materials value chain. For customers in the automobile, aerospace, rail, energy, construction and agriculture industries, the institute offers a wide range of NDT expertise and technologies. At the 19th World Conference on Non-Destructive Testing, our engineers will be presenting the acoustic resonance testing (ART) - an integral nondestructive testing method that is used to inspect components and assemblies with regard to different properties or variations in quality.

Acoustic resonance testing (ART) is an integral nondestructive testing method that is used to inspect components and assemblies with regard to different properties or variations in quality by evaluating the test object’s eigenfrequencies or other parameters determined from its natural vibration behavior.


Acoustic resonance analysis

Fraunhofer IZFP/Uwe Bellhäuser

As a comparative method, ART mainly focusses on the examination of serial parts which are produced in large quantities and with low cycle times, e.g. forged or casted metallic parts. Besides the possibility for complete automation, a big advantage of ART compared to other volume-oriented methods is the fast in-line quality assessment of an entire specimen within a matter of seconds.

The principle of ART is based on the fact that a specimen’s natural vibration behavior and its eigenfrequencies mainly depend on geometry and material properties, but also on structural defects, e.g. cracks.

One objective of ART is to detect defective parts by evaluating the test object’s measured eigenfrequencies. Generally, the exact geometric dimensions and the exact material properties of single parts in a serial production vary randomly within acceptable ranges, for example because of manufacture-related effects, entailing variations in the eigenfrequencies of the good parts.

These effects are superposed by changes in the eigenfrequencies caused by intolerable component variations. This impedes a reliable classification of the components with the help of ART. To solve this problem a new compensation method of those random perturbations respectively a method to differ between eigenfrequency shifts caused by acceptable as well as intolerable variations is required.

A current research project focusses on detecting forged or casted metallic parts with intolerable geometric variations by evaluating the component’s eigenfrequencies, whereat such parts are also characterized by large acceptable component variations.

Previous investigations using simulated data showed that the exact dimensions of components can be estimated from their eigenfrequencies after describing those correlations with the help of linear regression analyses. This contribution presents the latest results of the project, especially the adjustment of this procedure to real parts and the associated difficulties.

Weitere Informationen:

http://www.izfp.fraunhofer.de

Sabine Poitevin-Burbes | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

More articles from Materials Sciences:

nachricht Robust and functional – surface finishing by suspension spraying
19.09.2017 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Graphene and other carbon nanomaterials can replace scarce metals
19.09.2017 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>