Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Acoustic resonance testing for nondestructive detection of forged or casted serial parts


The Fraunhofer Institute for Nondestructive Testing IZFP carries out research and development activities in the field of nondestructive testing processes along the entire materials value chain. For customers in the automobile, aerospace, rail, energy, construction and agriculture industries, the institute offers a wide range of NDT expertise and technologies. At the 19th World Conference on Non-Destructive Testing, our engineers will be presenting the acoustic resonance testing (ART) - an integral nondestructive testing method that is used to inspect components and assemblies with regard to different properties or variations in quality.

Acoustic resonance testing (ART) is an integral nondestructive testing method that is used to inspect components and assemblies with regard to different properties or variations in quality by evaluating the test object’s eigenfrequencies or other parameters determined from its natural vibration behavior.

Acoustic resonance analysis

Fraunhofer IZFP/Uwe Bellhäuser

As a comparative method, ART mainly focusses on the examination of serial parts which are produced in large quantities and with low cycle times, e.g. forged or casted metallic parts. Besides the possibility for complete automation, a big advantage of ART compared to other volume-oriented methods is the fast in-line quality assessment of an entire specimen within a matter of seconds.

The principle of ART is based on the fact that a specimen’s natural vibration behavior and its eigenfrequencies mainly depend on geometry and material properties, but also on structural defects, e.g. cracks.

One objective of ART is to detect defective parts by evaluating the test object’s measured eigenfrequencies. Generally, the exact geometric dimensions and the exact material properties of single parts in a serial production vary randomly within acceptable ranges, for example because of manufacture-related effects, entailing variations in the eigenfrequencies of the good parts.

These effects are superposed by changes in the eigenfrequencies caused by intolerable component variations. This impedes a reliable classification of the components with the help of ART. To solve this problem a new compensation method of those random perturbations respectively a method to differ between eigenfrequency shifts caused by acceptable as well as intolerable variations is required.

A current research project focusses on detecting forged or casted metallic parts with intolerable geometric variations by evaluating the component’s eigenfrequencies, whereat such parts are also characterized by large acceptable component variations.

Previous investigations using simulated data showed that the exact dimensions of components can be estimated from their eigenfrequencies after describing those correlations with the help of linear regression analyses. This contribution presents the latest results of the project, especially the adjustment of this procedure to real parts and the associated difficulties.

Weitere Informationen:

Sabine Poitevin-Burbes | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>