Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accelerated corrosion testing of silver provides clues about performance in atmospheric conditions

04.12.2013
Small test strips made of silver or other metals, called "coupons," are frequently used to assess and predict the speeds at which metals used in outdoor environments—pipelines, aircraft, bridges, as well as countless other types of infrastructure and machinery—will succumb to corrosion.

"Silver is commonly used as a coupon, so it's important to understand what controls its corrosion rate," explains Gerald Frankel, director of the Fontana Corrosion Center, Department of Materials Science and Engineering, The Ohio State University.

In a paper recently published in CORROSION journal, Frankel and co-author Huang Lin, a graduate research associate at the Fontana Corrosion Center, describe their work delving into accelerated atmospheric corrosion testing of silver in atmospheres containing humidity and ozone, with sodium chloride (salt) surface contamination and ultraviolet (UV) illumination.

By exploring the effects of all of these corrosive parameters on silver coupons in a "home-built" environment chamber, the researchers discovered that ozone, UV, and relative humidity all play significant roles in silver's corrosion rate.

Gaining a deeper understanding of the roles that the individual atmospheric parameters each play in influencing the corrosion rate of metals, such as silver, will enable the development of new models to better predict atmospheric corrosion rates and, ultimately, performance.

"Our work also involved finding appropriate accelerated lab tests to generate corrosion quickly, and then understanding how the performance of these tests might relate to the performance in real-world atmospheric conditions," Frankel notes.

Next, the researchers plan to study other metals that corrode uniformly, such as copper; and metals that corrode in a localized manner, such as aluminum alloys, painted metals, and galvanically coupled dissimilar metals.

More Information:

The paper, "Accelerated Atmospheric Corrosion Testing of Ag," written by Huang Lin and G.S. Frankel, appears in NACE International's journal, CORROSION, Nov. 2013, Vol. 69, No. 11, pp. 1060-1072. See: http://dx.doi.org/10.5006/0926

About NACE International: Founded in 1943, NACE International, The Corrosion Society, serves 30,000 members in 130 countries. Based in Houston, Texas, with offices in the U.S., China, Malaysia, and Saudi Arabia, the organization reaches all industries impacted by corrosion and offers the most specified technical training and certification programs, conferences, industry standards, reports, publications, and software to prevent and mitigate corrosion. NACE International provides members with career and business building resources, government relations and public awareness support, and research and education to support the pursuit of global corrosion control solutions.

CORROSION is a technical research journal devoted to furthering the knowledge of corrosion science and engineering. The technical articles selected for publication in CORROSION provide a permanent record of the latest progress in the science and technology of corrosion control. The journal is directed at scientists and engineers concerned with the phenomena of corrosion processes and the protection of materials in corrosive environments. For more information, please visit http://corrosionjournal.org.

Alysa Reich | EurekAlert!
Further information:
http://www.nace.org
http://www.corrosionjournal.org

More articles from Materials Sciences:

nachricht Osaka university researchers make the slipperiest surfaces adhesive
18.10.2017 | Osaka University

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>