Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Versatile High-Sensitivity Surface Stress Membrane Sensor

29.03.2011
An international team of researchers have developed a versatile and high-sensitivity sensor for detecting analytes ranging from gaseous to biological molecules.

National Institute for Materials Science (NIMS) announced on February 8, 2011 that Researcher Genki Yoshikawa of NIMS International Center for Materials Nanoarchitechtonics (MANA), Swiss Federal Institute of Technology, Lausanne and Nobel Laureate Dr. Heinrich Rohrer jointly developed a versatile high-sensitivity surface stress membrane sensor. Details were presented in NANO Letters of American Chemical Society*.

The nanomechanical cantilever sensor is a promising device for real-time and label-free detection of various analytes ranging from gaseous to biological molecules. The major sensing principle is based on the analyte-induced surface stress, which makes a cantilever bend. Bending is detected by a reflected laser beam. However, this method is not applicable to an opaque analyte such as blood. Piezoresistive cantilevers applicable to opaque analytes have the problem of lower sensitivity.

In this work, an "adsorbate membrane" is suspended by four piezoresistive "sensing beams", which constitute a full Wheatstone bridge. Stress unbalance induced by the adsorbed analyte is efficiently detected by the bridge. Evaluation of this membrane-type surface stress sensor demonstrates a high sensitivity comparable to optical methods and a factor of more than 20 higher than that obtained with a standard piezoresistive cantilever. The finite element analyses indicate that the sensitivity will be improved by changing dimensions of the membrane and beams.

Researchers suggest that this platform is expected to open a new era of surface stress-based sensing because of the various conveniences and advantages of the integrated piezoresistive read-out.

Journal information

*Genki Yoshikawa, Terunobu Akiyama, Sebastian Gautsch, Peter Vettiger, and Heinrich Rohrer, "Nanomechanical Membrane-type Surface Stress Sensor", Nano Letters, Article ASAP, DOI: 10.1021/nl103901a, Publication Date (Web): February 11, 2011.

Mikiko Tanifuji | Research asia research news
Further information:
http://nanonet.nims.go.jp/english/modules/news/article.php?a_id=741
http://www.researchsea.com

Further reports about: High-Sensitivity Materials Science Membrane Sensor Versatile

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>