Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Versatile High-Sensitivity Surface Stress Membrane Sensor

An international team of researchers have developed a versatile and high-sensitivity sensor for detecting analytes ranging from gaseous to biological molecules.

National Institute for Materials Science (NIMS) announced on February 8, 2011 that Researcher Genki Yoshikawa of NIMS International Center for Materials Nanoarchitechtonics (MANA), Swiss Federal Institute of Technology, Lausanne and Nobel Laureate Dr. Heinrich Rohrer jointly developed a versatile high-sensitivity surface stress membrane sensor. Details were presented in NANO Letters of American Chemical Society*.

The nanomechanical cantilever sensor is a promising device for real-time and label-free detection of various analytes ranging from gaseous to biological molecules. The major sensing principle is based on the analyte-induced surface stress, which makes a cantilever bend. Bending is detected by a reflected laser beam. However, this method is not applicable to an opaque analyte such as blood. Piezoresistive cantilevers applicable to opaque analytes have the problem of lower sensitivity.

In this work, an "adsorbate membrane" is suspended by four piezoresistive "sensing beams", which constitute a full Wheatstone bridge. Stress unbalance induced by the adsorbed analyte is efficiently detected by the bridge. Evaluation of this membrane-type surface stress sensor demonstrates a high sensitivity comparable to optical methods and a factor of more than 20 higher than that obtained with a standard piezoresistive cantilever. The finite element analyses indicate that the sensitivity will be improved by changing dimensions of the membrane and beams.

Researchers suggest that this platform is expected to open a new era of surface stress-based sensing because of the various conveniences and advantages of the integrated piezoresistive read-out.

Journal information

*Genki Yoshikawa, Terunobu Akiyama, Sebastian Gautsch, Peter Vettiger, and Heinrich Rohrer, "Nanomechanical Membrane-type Surface Stress Sensor", Nano Letters, Article ASAP, DOI: 10.1021/nl103901a, Publication Date (Web): February 11, 2011.

Mikiko Tanifuji | Research asia research news
Further information:

Further reports about: High-Sensitivity Materials Science Membrane Sensor Versatile

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>