Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Versatile High-Sensitivity Surface Stress Membrane Sensor

29.03.2011
An international team of researchers have developed a versatile and high-sensitivity sensor for detecting analytes ranging from gaseous to biological molecules.

National Institute for Materials Science (NIMS) announced on February 8, 2011 that Researcher Genki Yoshikawa of NIMS International Center for Materials Nanoarchitechtonics (MANA), Swiss Federal Institute of Technology, Lausanne and Nobel Laureate Dr. Heinrich Rohrer jointly developed a versatile high-sensitivity surface stress membrane sensor. Details were presented in NANO Letters of American Chemical Society*.

The nanomechanical cantilever sensor is a promising device for real-time and label-free detection of various analytes ranging from gaseous to biological molecules. The major sensing principle is based on the analyte-induced surface stress, which makes a cantilever bend. Bending is detected by a reflected laser beam. However, this method is not applicable to an opaque analyte such as blood. Piezoresistive cantilevers applicable to opaque analytes have the problem of lower sensitivity.

In this work, an "adsorbate membrane" is suspended by four piezoresistive "sensing beams", which constitute a full Wheatstone bridge. Stress unbalance induced by the adsorbed analyte is efficiently detected by the bridge. Evaluation of this membrane-type surface stress sensor demonstrates a high sensitivity comparable to optical methods and a factor of more than 20 higher than that obtained with a standard piezoresistive cantilever. The finite element analyses indicate that the sensitivity will be improved by changing dimensions of the membrane and beams.

Researchers suggest that this platform is expected to open a new era of surface stress-based sensing because of the various conveniences and advantages of the integrated piezoresistive read-out.

Journal information

*Genki Yoshikawa, Terunobu Akiyama, Sebastian Gautsch, Peter Vettiger, and Heinrich Rohrer, "Nanomechanical Membrane-type Surface Stress Sensor", Nano Letters, Article ASAP, DOI: 10.1021/nl103901a, Publication Date (Web): February 11, 2011.

Mikiko Tanifuji | Research asia research news
Further information:
http://nanonet.nims.go.jp/english/modules/news/article.php?a_id=741
http://www.researchsea.com

Further reports about: High-Sensitivity Materials Science Membrane Sensor Versatile

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>