Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new look below the surface of nanomaterials

17.08.2011
Scientists can now look deeper into new materials to study their structure and behavior, thanks to work by an international group of researchers led by UC Davis and the Lawrence Berkeley National Laboratory and published Aug. 14 by the journal Nature Materials.

The technique will enable more detailed study of new types of materials for use in electronics, energy production, chemistry and other applications.

The technique, called angle-resolved photoemission, has been used since the 1970s to study materials, especially properties such as semiconductivity, superconductivity and magnetism. But the technique allows probing to a depth of only about a nanometer beneath the surface of a material, a limit imposed by the strong inelastic scattering of the emitted electrons.

The breakthrough work of the UC Davis/LBNL team made use of the high-intensity X-ray source operated by the Japanese National Institute for Materials Sciences at the SPring8 synchrotron radiation facility in Hyogo, Japan, and allowed researchers to look far deeper into a material, providing more information and reducing surface effects.

"We can now take this to much higher energies than previously thought," said Chuck Fadley, professor of physics at UC Davis and the Lawrence Berkeley Lab, who is senior author of the paper.

The technique is based on the photoelectric effect described by Einstein in 1905: When a photon is shot into a material, it knocks out an electron. By measuring the angle, energy and perhaps the spin of the ejected electrons, scientists can learn in detail about electron motion and bonding in the material.

Previously, the technique used energies of about 10 to 150 electron-volts. Working at the Japanese facility, Fadley and his colleagues were able to boost that to as high as 6,000 electron-volts — energies that increased the probing depth up to 20-fold.

Thanks to recent advances in electron optics, the team was also able to collect accurate information using specially designed spectrometers — effectively cameras for electrons.

The spectrometer is rather like a pinhole camera, Fadley noted. It's easy to get a sharp image with a pinhole camera by keeping the entrance opening small. Open up this aperture and a lot more light is admitted, but a clear image becomes more difficult to extract. But new developments in electron optics, particularly in Sweden, have made it possible to detect sufficient electrons to carry out such experiments.

Several high-powered X-ray sources are now running or being built in Europe and Asia, although none are yet planned in the U.S., Fadley said. The new technique could be used both for basic and commercial research on new materials for electronics and technology.

Fadley noted that he had first proposed the idea of using a high-intensity X-ray source to look more deeply beneath the surface of materials around 1980, but neither the X-ray sources nor the spectrometers existed to make the experiment feasible.

Important theoretical contributions to the work were made by Warren Picket, professor and chair of physics at UC Davis, and his research team, and Hubert Ebert of Ludwig Maximillian University, and his research team in Munich. Picket and Ebert are both co-authors of the paper.

Other co-authors are Alexander Gray, Christian Papp, and Benjamin Balke at UC Davis and the Lawrence Berkeley National Laboratory, with Papp now at the University of Erlangen and Balke now at the University of Mainz; Erik Ylvisaker at UC Davis; Shigenori Ueda, Yoshiyuki Yamashita, and Keisuke Kobayashi at the National Institute for Material Science, Hyogo, Japan; Lukasz Plucinski and Claus Schneider at the Peter Gruenberg Institute, Juelich, Germany; and Jan Minár and Juergen Braun at Ludwig Maximillian University, Munich, Germany.

The work was funded by the Nanotechnology Network Project of the Japanese Ministry of Education, Culture, Sports, Science and Technology, with additional financial support from the Deutsche Forschungsgemeinschaft and the Bundesministerium für Bildung und Forschung in Germany.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>