Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A single device emulates complex synaptic functions for the first time

29.07.2011
A new device with memorizing and forgetting functions like human brain is reported

A joint research group of International Center for Materials Nanoarchitectonics, NIMS, and Department of Chemistry and Biochemistry, University of California, Los Angeles succeeded in developing a new inorganic device named "synapse device"

National Institute of Materials Science (NIMS) and Japan Science and Technology Agency (JST) announced on June 27, 2011 that a joint research group of International Center for Materials Nanoarchitectonics, NIMS, and Department of Chemistry and Biochemistry, University of California, Los Angeles succeeded in developing a new inorganic device named "synapse device", which automatically realizes two types of functions analogous to those of the human brain, i.e., memorizing and forgetting. Details are published online in Nature Materials on June 26, 2011*.

The device is made with the atomic switch which consists of an Ag2S-coated metal Ag electrode and a counter electrode of platinum Pt, having a nanometer gap between the two electrodes. The atomic switch works by the formation and annihilation of an Ag-atom bridge between the electrodes, which is realized by controlling the solid-state electrochemical reaction of a mixed ionic and electronic conductor Ag2S.

The research group discovered that the device emulates two types of synaptic function, short-term plasticity and long-term potentiation by varying input pulse repetition time which controls the formation of the Ag-atom bridges.

The published paper in Nature Materials remarks that the Ag2S device indicates a breakthrough in mimicking synaptic behavior essential for further creation of artificial neural systems that emulate human memories.

* Takeo Ohno, Tsuyoshi Hasegawa, Tohru Tsuruoka, Kazuya Terabe, James K. Gimzewski & Masakazu Aono, "Short-term plasticity and long-term potentiation mimicked in single inorganic synapses", Nature Materials (2011) Published online: 26 June 2011 | doi:10.1038/nmat3054

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/index.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Breaking bad metals with neutrons
16.01.2018 | DOE/Argonne National Laboratory

nachricht White graphene makes ceramics multifunctional
16.01.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>