Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A recipe for controlling carbon nanotubes

22.09.2009
Case Western Reserve University researchers find mixing different metals in a catalyst can help determine structure, function

Nanoscopic tubes made of a lattice of carbon just a single atom deep hold promise for delivering medicines directly to a tumor, sensors so keen they detect the arrival or departure of a single electron, a replacement for costly platinum in fuel cells or as energy]saving transistors and wires.

Single]walled carbon nanotubes, made of a cheap and abundant material, have so much potential because their function changes when their atomic]level structure, referred to as chirality, changes.

But for all their promise, building tubes with the right structure has proven a challenge.

A pair of Case Western Reserve University researchers mixed metals commonly used to grow nanotubes and found that the composition of the catalyst can control the chirality.

In a letter to be published Sept. 20 in the online edition of Nature Materials, R. Mohan Sankaran, an assistant professor of chemical engineering at the Case School of Engineering, and Wei]Hung Chiang, who received his doctorate degree in chemical engineering in May, describe their findings.

"We have established a link between the structure of a catalyst and the chirality of carbon nanotubes," Sankaran said. "Change the catalyst structure by varying its composition, and you can begin to control the chirality of the nanotubes and their electrical and optical properties."

The chirality of a single]walled carbon nanotube describes how a lattice of carbon atoms is rolled into a tube. The rolling can occur at different angles, producing different structures that exhibit very different properties.

Nanotubes are normally grown in bulk mixtures. When using a nickel catalyst, typically one]third of those grown are metallic and could be used like metal wires to conduct electricity. About two]thirds are semiconducting nanotubes, which could be used as transistors, Chiang explained. But, separating them according to properties, "is costly and can damage the nanotubes."

Better to make what you want.

Chiang and Sankaran found that a mixed iron and nickel catalyst could change the outcome. Of the compositions tested, a catalyst of 27 percent nickel and 73 percent iron produced the most dramatic result: the vast majority of the nanotubes were semiconducting. They are now working on assessing the purity and integrating the nanotubes into thin film transistors.

The authors say their findings open the door to experimenting with other elements as catalysts and different combinations, which may produce near]pure nanotubes with desired properties.

The Advance Online Publication of the article, titled "Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NIxFe1-x nanoparticles," will be available on Nature Material's website: http://www.nature.com/nmat/index.html on Sept. 20 at 1 p.m. Eastern Standard Time. At that time, the embargo will lift.

Case Western Reserve University is among the nation's leading research institutions. Founded in 1826 and shaped by the unique merger of the Case Institute of Technology and Western Reserve University, Case Western Reserve is distinguished by its strengths in education, research, service, and experiential learning. Located in Cleveland, Case Western Reserve offers nationally recognized programs in the Arts and Sciences, Dental Medicine, Engineering, Law, Management, Medicine, Nursing, and Social Work.

Kevin Mayhood | EurekAlert!
Further information:
http://www.case.edu

More articles from Materials Sciences:

nachricht Electron tomography technique leads to 3-D reconstructions at the nanoscale
24.05.2018 | The Optical Society

nachricht These could revolutionize the world
24.05.2018 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>