Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A recipe for controlling carbon nanotubes

Case Western Reserve University researchers find mixing different metals in a catalyst can help determine structure, function

Nanoscopic tubes made of a lattice of carbon just a single atom deep hold promise for delivering medicines directly to a tumor, sensors so keen they detect the arrival or departure of a single electron, a replacement for costly platinum in fuel cells or as energy]saving transistors and wires.

Single]walled carbon nanotubes, made of a cheap and abundant material, have so much potential because their function changes when their atomic]level structure, referred to as chirality, changes.

But for all their promise, building tubes with the right structure has proven a challenge.

A pair of Case Western Reserve University researchers mixed metals commonly used to grow nanotubes and found that the composition of the catalyst can control the chirality.

In a letter to be published Sept. 20 in the online edition of Nature Materials, R. Mohan Sankaran, an assistant professor of chemical engineering at the Case School of Engineering, and Wei]Hung Chiang, who received his doctorate degree in chemical engineering in May, describe their findings.

"We have established a link between the structure of a catalyst and the chirality of carbon nanotubes," Sankaran said. "Change the catalyst structure by varying its composition, and you can begin to control the chirality of the nanotubes and their electrical and optical properties."

The chirality of a single]walled carbon nanotube describes how a lattice of carbon atoms is rolled into a tube. The rolling can occur at different angles, producing different structures that exhibit very different properties.

Nanotubes are normally grown in bulk mixtures. When using a nickel catalyst, typically one]third of those grown are metallic and could be used like metal wires to conduct electricity. About two]thirds are semiconducting nanotubes, which could be used as transistors, Chiang explained. But, separating them according to properties, "is costly and can damage the nanotubes."

Better to make what you want.

Chiang and Sankaran found that a mixed iron and nickel catalyst could change the outcome. Of the compositions tested, a catalyst of 27 percent nickel and 73 percent iron produced the most dramatic result: the vast majority of the nanotubes were semiconducting. They are now working on assessing the purity and integrating the nanotubes into thin film transistors.

The authors say their findings open the door to experimenting with other elements as catalysts and different combinations, which may produce near]pure nanotubes with desired properties.

The Advance Online Publication of the article, titled "Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NIxFe1-x nanoparticles," will be available on Nature Material's website: on Sept. 20 at 1 p.m. Eastern Standard Time. At that time, the embargo will lift.

Case Western Reserve University is among the nation's leading research institutions. Founded in 1826 and shaped by the unique merger of the Case Institute of Technology and Western Reserve University, Case Western Reserve is distinguished by its strengths in education, research, service, and experiential learning. Located in Cleveland, Case Western Reserve offers nationally recognized programs in the Arts and Sciences, Dental Medicine, Engineering, Law, Management, Medicine, Nursing, and Social Work.

Kevin Mayhood | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>