Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A necklace of fractional vortices

02.10.2015

Researchers at Chalmers University of Technology have arrived at how what is known as time-reversal symmetry can break in one class of superconducting material. The results have been published in the highly ranked Nature Physics journal, which also put the Chalmers researchers' study on the cover.

"Symmetries are an important aspect when describing nature", says Mikael Fogelström, who is a professor of theoretical physics at Chalmers University of Technology.


A route to a time-reversal symmetry-broken state for d-wave superconductors is shown to occur via the formation of a necklace of fractional vortices around the perimeter of the material, where neighboring vortices have opposite current circulation. This vortex pattern is a result of a spectral rearrangement of current-carrying states near the edges.

Credit: Mikael Håkansson

"A ball is round and looks the same regardless of how we rotate it; thus, it has rotational symmetry. In the same way, most materials have symmetries that describe what the materials look like and what their properties are. If one or more symmetries breaks, this signals a phase transition to a new state. When a material becomes magnetic, a more abstract symmetry, what is known as time-reversal symmetry, is broken".

Superconducting materials conduct electric current without loss of energy. In 1986, researchers discovered that a family of perovskite materials - that have two-dimensional copper-oxide planes - becomes superconductive at relatively high temperatures. It could also thereafter be fairly quickly ascertained by experiments that the superconducting phase also broke the crystal symmetry, and that the material was unusual in this respect.

Theoreticians pondered whether the materials could also break time-reversal symmetry and produce spontaneous magnetisation. Experiments, primarily related to electron transport, showed that this was the case, while another category of experiments aimed at directly measuring the spontaneous magnetisation demonstrated no effect.

"Our work has arrived at a new mechanism for breaking time-reversal symmetry in high-temperature superconductors" says Tomas Löfwander, who is one of the researchers behind the new results. "We maintain that this has probably already been observed and that the two sets of experiments do not contradict one another."

The Chalmers researchers' discovery is based on a software package that researcher Mikael Håkansson developed while completing his licentiate thesis at the Division of Applied Quantum Physics at MC2, in order to produce a theoretical model of small mesoscopic superconducting grains. The software package utilises massive parallelisation of the numeric work, which can then be processed in graphics processing units, or GPUs.

"The time required to perform the fairly demanding computations was significantly reduced, and we were able to focus more on the physics and simulate more realistic systems", explains Mikael Håkansson. "At the same time, I developed a tool to process and visualise the large amounts of data that the software produced. The cover of the September issue of Nature Physics shows how the electron state is distributed in energy along a surface of a high-temperature superconductor when it has broken the time-reversal symmetry."

The computational tool has allowed the Chalmers researchers to investigate cases where the ring of a superconducting crystal affects the force of the superconducting phase. A periodic pattern of vortices spontaneously forms in the shape of a necklace along the surface as soon as the temperature is lower than a limit temperature. These vortices in turn cause a spontaneous magnetic flux that alternates direction on a length scale of a few dozen nanometers.

"We believe that new results with what are known as nanosquids, which are magnetometers with extremely good resolution, will be able to give immediate experimental verification of our results," says Mikael Fogelström.

###

Read the article "Spontaneously broken time-reversal symmetry in high-temperature superconductors" in Nature Physics: http://dx.doi.org/10.1038/nphys3383

Johanna Wilde | EurekAlert!

More articles from Materials Sciences:

nachricht Breaking bad metals with neutrons
16.01.2018 | DOE/Argonne National Laboratory

nachricht White graphene makes ceramics multifunctional
16.01.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>