Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A necklace of fractional vortices

02.10.2015

Researchers at Chalmers University of Technology have arrived at how what is known as time-reversal symmetry can break in one class of superconducting material. The results have been published in the highly ranked Nature Physics journal, which also put the Chalmers researchers' study on the cover.

"Symmetries are an important aspect when describing nature", says Mikael Fogelström, who is a professor of theoretical physics at Chalmers University of Technology.


A route to a time-reversal symmetry-broken state for d-wave superconductors is shown to occur via the formation of a necklace of fractional vortices around the perimeter of the material, where neighboring vortices have opposite current circulation. This vortex pattern is a result of a spectral rearrangement of current-carrying states near the edges.

Credit: Mikael Håkansson

"A ball is round and looks the same regardless of how we rotate it; thus, it has rotational symmetry. In the same way, most materials have symmetries that describe what the materials look like and what their properties are. If one or more symmetries breaks, this signals a phase transition to a new state. When a material becomes magnetic, a more abstract symmetry, what is known as time-reversal symmetry, is broken".

Superconducting materials conduct electric current without loss of energy. In 1986, researchers discovered that a family of perovskite materials - that have two-dimensional copper-oxide planes - becomes superconductive at relatively high temperatures. It could also thereafter be fairly quickly ascertained by experiments that the superconducting phase also broke the crystal symmetry, and that the material was unusual in this respect.

Theoreticians pondered whether the materials could also break time-reversal symmetry and produce spontaneous magnetisation. Experiments, primarily related to electron transport, showed that this was the case, while another category of experiments aimed at directly measuring the spontaneous magnetisation demonstrated no effect.

"Our work has arrived at a new mechanism for breaking time-reversal symmetry in high-temperature superconductors" says Tomas Löfwander, who is one of the researchers behind the new results. "We maintain that this has probably already been observed and that the two sets of experiments do not contradict one another."

The Chalmers researchers' discovery is based on a software package that researcher Mikael Håkansson developed while completing his licentiate thesis at the Division of Applied Quantum Physics at MC2, in order to produce a theoretical model of small mesoscopic superconducting grains. The software package utilises massive parallelisation of the numeric work, which can then be processed in graphics processing units, or GPUs.

"The time required to perform the fairly demanding computations was significantly reduced, and we were able to focus more on the physics and simulate more realistic systems", explains Mikael Håkansson. "At the same time, I developed a tool to process and visualise the large amounts of data that the software produced. The cover of the September issue of Nature Physics shows how the electron state is distributed in energy along a surface of a high-temperature superconductor when it has broken the time-reversal symmetry."

The computational tool has allowed the Chalmers researchers to investigate cases where the ring of a superconducting crystal affects the force of the superconducting phase. A periodic pattern of vortices spontaneously forms in the shape of a necklace along the surface as soon as the temperature is lower than a limit temperature. These vortices in turn cause a spontaneous magnetic flux that alternates direction on a length scale of a few dozen nanometers.

"We believe that new results with what are known as nanosquids, which are magnetometers with extremely good resolution, will be able to give immediate experimental verification of our results," says Mikael Fogelström.

###

Read the article "Spontaneously broken time-reversal symmetry in high-temperature superconductors" in Nature Physics: http://dx.doi.org/10.1038/nphys3383

Johanna Wilde | EurekAlert!

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>