Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A microscope that can move atoms and draw super high resolution surface images of living cells

17.12.2010
• A*STAR’s IMRE houses some of the world’s leading experts in SPM which was built for the physical sciences but is now widely adopted by biologists
• SPM studies can help engineer novel techniques to reduce friction between surfaces at the molecular level and further miniaturise electronics.

1. The scanning probe microscope (SPM) can manipulate single atoms, move them in a controlled manner and help create novel nano-sized structures with very high precision. It can also map the terrain of living cells and allows biologists to obtain high-resolution images of a cell’s surface. The uniqueness and versatility of the tool is underscored in a new book by local researchers from A*STAR’s Institute of Materials Research and Engineering (IMRE). The book covers the practical uses of SPM and Singapore’s significant contribution in this area.

2. The SPM creates extremely accurate high-resolution images of a specimen’s surface by moving an extremely fine metal probe - which is a thousand times less than a hair’s breadth - across the surface, one parallel line at a time. SPM can be used to image materials with atomic-scale resolution and can be used to study living cells in their original liquid-filled environments. SPM has also allowed A*STAR IMRE scientists to create the world’s first controllable molecular gear and secure a place in a €10million European Union (EU) project to build a molecule-sized processor chip.

3. IMRE has more than 10 SPM systems which are used across multiple disciplines, such as physics, chemistry, and biology. Data gained from SPM can be used to benefit the semiconductor industry, advance molecular electronics, control friction between two surfaces at the molecular level and help in further scaling down the size of electronics.

4. “I believe it is a good showcase of Singapore’s concerted effort in translating science into technology”, said Dr Johnson Goh, a Senior Research Engineer with IMRE and one of the editors of the book. “This book covers the latest SPM research in Singapore, with many of the works looking beyond fundamental science to applications in nanoelectronics, biology and scalable nanolithography.” IMRE also conducts annual symposiums on SPM, which involve both academic and industry partners to further promote the industry-relevant advantages of the tool.

5. The book entitled, “Scanning Probe Microscopy”, will be published by World Scientific Publishing and will be internationally available after its launch on 15 December 2010 in conjunction with the 3rd Singapore Scanning Probe Microscopy Symposium (SingSPM 2010).

Encl.
Annex A: A*STAR Corporate Profiles
Annex B: ‘IMRE’ written with individual gold atoms on Au (111), using an SPM

Eugene Low | Research asia research news
Further information:
http://www.a-star.edu.sg/
http://www.researchsea.com

Further reports about: A*STAR IMRE SPM Singapore Singapore’s living cell single atom

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>