Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Material That Most Liquids Won't Wet

18.01.2013
A nanoscale coating that's at least 95 percent air repels the broadest range of liquids of any material in its class, causing them to bounce off the treated surface, according to the University of Michigan engineering researchers who developed it.

In addition to super stain-resistant clothes, the coating could lead to breathable garments to protect soldiers and scientists from chemicals, and advanced waterproof paints that dramatically reduce drag on ships.

Droplets of solutions that would normally damage either your shirt or your skin recoil when they touch the new "superomniphobic surface."

"Virtually any liquid you throw on it bounces right off without wetting it. For many of the other similar coatings, very low surface tension liquids such as oils, alcohols, organic acids, organic bases and solvents stick to them and they could start to diffuse through and that's not what you want," said Anish Tuteja, assistant professor of materials science and engineering, chemical engineering and macromolecular science and engineering.

Tuteja is the corresponding author of a paper on the coating published in the current issue of the Journal of the American Chemical Society.

She and her colleagues tested more than 100 liquids and found only two that were able to penetrate the coating. They were chlorofluorocarbons—chemicals used in refrigerators and air conditioners. In Tuteja's lab, in a demonstration, the surface repelled coffee, soy sauce and vegetable oil, as well as toxic hydrochloric and sulfuric acids that could burn skin. Tuteja says it's also resistant to gasoline and various alcohols.

To apply the coating, the researchers use a technique called electrospinning that uses an electric charge to create fine particles of solid from a liquid solution. So far, they've coated small tiles of screen and postage-stamp-sized swaths of fabric.

The coating is a mixture of rubbery plastic particles of "polydimethylsiloxane," or PDMS, and liquid-resisting nanoscale cubes developed by the Air Force that contain carbon, fluorine, silicon and oxygen. The material's chemistry is important, but so is its texture. It hugs the pore structure of whatever surface it's being applied to, and it also creates a finer web within those pores. This structure means that between 95 and 99 percent of the coating is actually air pockets, so any liquid that comes in contact with the coating is barely touching a solid surface.

Because the liquid touches mere filaments of the solid surface, as opposed to a greater area, the developed coating can dramatically reduce the intermolecular forces that normally draw the two states of matter together. These Van der Waals interaction forces are kept at a minimum.

"Normally, when the two materials get close, they imbue a small positive or negative charge on each other, and as soon as the liquid comes in contact with the solid surface it will start to spread," Tuteja said. "We've drastically reduced the interaction between the surface and the droplet."

With almost no incentive to spread, the droplets stay intact, interacting only with molecules of themselves, maintaining a spherical shape, and literally bouncing off the coating.

One classification of liquid that this coating repels is the so-called non-Newtonian category, which includes shampoos, custards, blood, paints, clays and printer inks, for example. These are liquids that change their viscosity depending on the forces applied to them. They differ from the Newtonians, such as water and most other liquids, whose viscosity stays the same no matter the force applied. Viscosity is a measure of a liquid's resistance to flow on the application of force, and it's sometimes thought of as its thickness.

"No one's ever demonstrated the bouncing of low surface tension non-Newtonian liquids," Tuteja said.

The paper is titled "Superomniphobic Surfaces for Effective Chemical Shielding." Doctoral student Shuaijun Pan and postdoctoral researcher Arun Kota, both in materials science and engineering, are the first authors of the paper. Also contributing is Joseph Mabry, in the rocket propulsion division of the Air Force Research Laboratory. The work is funded by the Air Force Office of Scientific Research.

Anish Tuteja: www.mse.engin.umich.edu/people/faculty/tuteja

Abstract of paper: http://pubs.acs.org/doi/abs/10.1021/ja310517s

EDITORS: Watch and link to a video about the new repellent surface at www.youtube.com/watch?v=ICw5k1tDZSk. Photos are available at www.flickr.com/photos/michigan-engineering/sets/72157632483361482

Nicole Casal Moore | Newswise
Further information:
http://www.umich.edu

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>