Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Guinness World Record for Singapore with A*STAR IMRE’s world’s smallest working gears

06.09.2011
The Institute of Materials Research and Engineering (IMRE), a research institute of Singapore’s Agency for Science, Technology and Research (A*STAR), puts Singapore into the Guinness Book of World Records with the world’s smallest working gear!

The Institute of Materials Research and Engineering (IMRE), a research institute of Singapore’s Agency for Science, Technology and Research (A*STAR), puts Singapore into the Guinness Book of World Records with its controllable, molecule-sized gears, which are officially the world’s smallest! The gears are up 100,000 times smaller than the width of a single strand of hair and can only be viewed using powerful microscopes.


The gear is made out of a hexa-t-butyl-pyrimidopentaphenylbenzene (C64N2H76; HB-NBP) molecule, which consists of a central core composed of one pyrimidine and five phenyl rings all connected to a central planar phenyl. This is connected to the ‘spokes’ of the wheel which is made up of six t-butyl outer groups that lift the central molecule core, or ‘hub’ from the substrate surface. Copyright : A*STAR

Singapore, 05 September 2011 – It’s official! Researchers from IMRE have put Singapore into the Guinness Book of World Records by successfully demonstrating the world’s smallest fully controlled rotation of a molecule-sized gear. The research opens the way for the future development of molecule-sized machines that may lead to innovations like pocket-sized supercomputers, miniature energy harvesting devices and data computing on atomic scale electronic circuits.

Before the team’s success, reported experiments attempting to rotate single molecules resulted in their random and uncontrolled rotation. The scientists from IMRE were able to solve the matter by manipulating the molecule with the tip of a Scanning Tunnelling Microscope, which is a powerful microscopy tool capable of imaging materials down to their atoms but which can also be used to manipulate single molecules and atoms on conductive surfaces. These experiments were done at cryogenic temperatures, of approximately -266°C, in an ultrahigh vacuum environment.

Looking like a wheel, the gear is made out of a hexa-t-butyl-pyrimidopentaphenylbenzene (C64N2H76; HB-NBP) molecule, which consists of a central core composed of one pyrimidine and five phenyl rings all connected to a central planar phenyl. This is connected to the ‘spokes’ of the wheel which are made up of six t-butyl outer groups that lift the central molecule core from the substrate surface. The molecule was mounted on an atom-sized impurity that acted as a pinning axle and manipulated using the microscope’s tip which turned the molecule step-by-step.

“This is an example of pioneering science that is technologically significant. With such innovations at the molecular level, today's molecules may be tomorrow's machines,” explained Prof Andy Hor, IMRE’s Executive Director.

The breakthrough gear was developed in 2009 and was published in one of science’s most prestigious materials research journals, Nature Materials.

For media enquiries, please contact:

Mr Eugene Low (Manager, Corporate Communications)
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8491
Mobile +65 9230 9235
Email loweom@scei.a-star.edu.sg
For technical enquiries, please contact:
Dr We-Hyo Soe (Scientist III)
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 1993
Email wh-soe@imre.a-star.edu.sg
Dr Carlos de Jesus Manzano Garcia (Scientist II)
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8604
Email garciac@imre.a-star.edu.sg
About the Institute of Materials Research and Engineering (IMRE)
The Institute of Materials Research and Engineering (IMRE) is a research institute of the Agency for Science, Technology and Research (A*STAR). The Institute has capabilities in materials analysis & characterisation, design & growth, patterning & fabrication, and synthesis & integration. We house a range of state-of-the-art equipment for materials research including development, processing and characterisation. IMRE conducts a wide range of research, which includes novel materials for organic solar cells, photovoltaics, printed electronics, catalysis, bio-mimetics, microfluidics, quantum dots, heterostructures, sustainable materials, atom technology, etc. We collaborate actively with other research institutes, universities, public bodies, and a wide spectrum of industrial companies, both globally and locally.

For more information about IMRE, please visit www.imre.a-star.edu.sg.

About the Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences and physical sciences and engineering research institutes, and six consortia & centres, located in Biopolis and Fusionopolis as well as their immediate vicinity. A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, and with other local and international partners.

Eugene Low | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

nachricht A rhodium-based catalyst for making organosilicon using less precious metal
22.06.2017 | Tokyo Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>