Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gel that is clearly revolutionary

23.01.2014
An innovative design turns soft hydrogels into ionic conductors with diverse applications, from artificial muscles to transparent audio speakers

Researchers are determined to manufacture stretchable biomedical devices that interface directly with organs such as the skin, heart and brain. Electronic devices, however, are usually made from hard materials that are incompatible with soft tissue.

Choon Chiang Foo from the A*STAR Institute of High Performance Computing, Singapore, and researchers at Harvard University, United States, are aiming to solve this dilemma with squishy, see-through gels that can act as integral components of stretchable devices thanks to an innovative ionic conduction mechanism (1).

Foo and co-workers made their discovery while investigating a promising ‘artificial muscle’ technology known as dielectric elastomers. These devices sandwich an insulating rubber polymer between two conductive electrodes, typically made from micro-cracked metals or carbon grease. Applying a voltage to the electrodes builds up pressure which causes the inner polymer to expand. Most electrode materials, however, begin to lose conductivity when subjected to high strains.

The researchers chose to replace the electrodes in dielectric elastomers with soft hydrogels. Hydrogels are transparent and biocompatible materials, typically used in contact lenses, which encapsulate salty ions and water inside a polymeric sheath. Replacing the electrodes requires overcoming two well-known limitations of ionic conductors: their slow speeds relative to electron conductors and a tendency to undergo destructive electrochemical reactions at high voltages.

The team’s setup addresses these problems by placing a thin insulating rubber sheet between two hydrogel layers. Electric signals sent to the hydrogel through tiny electrodes leads to rapid buildup of oppositely charged ions on each side of the rubber sheet causing the sandwiched device to thin and expand over the entire area. Furthermore, the rubber layer has a remarkably low capacitance, which causes a large voltage drop across the rubber and shields the hydrogel from electrochemical reactions, even at kilovolt ranges.

To demonstrate the high-frequency operation of their stretchable ionic material, the researchers produced the world’s first gel-based transparent loudspeaker (see image). This device, which could be placed over a smartphone or flat-screen television screen, resonated thousands of times per second over the entire audible range.

Foo, whose theoretical contributions proved critical to understanding the novel behavior of these stretchy gels, believes this work may lead to a fundamental shift in how engineers conceive electronic devices. “Because existing conductors struggle to meet the demands of stretchable applications, device designers may begin to ask if they can replace electronic conductors with ionic conductors,” he explains.

“The device may lose some performance but may gain other attributes, such as stretchiness, transparency and biocompatibility.”

The A*STAR-affiliated researcher contributing to this research is from the Institute of High Performance Computing

Journal information

Keplinger, C., Sun, J.-Y., Foo, C. C., Rothemund, P., Whitesides, G. M. & Suo, Z. Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013)

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New approach to revolutionize the production of molecular hydrogen
22.05.2017 | Technische Universität Dresden

nachricht Photocatalyst makes hydrogen production 10 times more efficient
19.05.2017 | Kobe University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>